Learning Graph Representation With Generative Adversarial Nets

对抗制 计算机科学 理论计算机科学 代表(政治) 人工智能 图形 生成语法 法学 政治学 政治
作者
Hongwei Wang,Jialin Wang,Jia Wang,Miao Zhao,Weinan Zhang,Fuzheng Zhang,Wenjie Li,Xing Xie,Minyi Guo
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:33 (8): 3090-3103 被引量:78
标识
DOI:10.1109/tkde.2019.2961882
摘要

Graph representation learning aims to embed each vertex in a graph into a low-dimensional vector space. Existing graph representation learning methods can be classified into two categories: generative models that learn the underlying connectivity distribution in a graph, and discriminative models that predict the probability of edge between a pair of vertices. In this paper, we propose GraphGAN, an innovative graph representation learning framework unifying the above two classes of methods, in which the generative and the discriminative model play a game-theoretical minimax game. Specifically, for a given vertex, the generative model tries to fit its underlying true connectivity distribution over all other vertices and produces "fake" samples to fool the discriminative model, while the discriminative model tries to detect whether the sampled vertex is from ground truth or generated by the generative model. With the competition between these two models, both of them can alternately and iteratively boost their performance. Moreover, we propose a novel graph softmax as the implementation of the generative model to overcome the limitations of traditional softmax function, which can be proven satisfying desirable properties of normalization, graph structure awareness, and computational efficiency. Through extensive experiments on real-world datasets, we demonstrate that GraphGAN achieves substantial gains in a variety of applications, including graph reconstruction, link prediction, node classification, recommendation, and visualization, over state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得10
刚刚
iNk应助科研通管家采纳,获得20
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
Micro_A应助科研通管家采纳,获得10
2秒前
科研通AI5应助qiulong采纳,获得10
2秒前
shisui应助科研通管家采纳,获得30
2秒前
2秒前
李爱国应助Belinda采纳,获得10
3秒前
zhi发布了新的文献求助10
4秒前
哈哈哈完成签到,获得积分10
4秒前
蔡继海发布了新的文献求助10
5秒前
6秒前
机智豌豆完成签到,获得积分10
6秒前
Freya完成签到,获得积分10
8秒前
简丹发布了新的文献求助10
10秒前
yyy完成签到,获得积分10
13秒前
Freya发布了新的文献求助10
14秒前
KinKrit发布了新的文献求助10
20秒前
小哥完成签到,获得积分10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976