Testing technology for tensile properties of metal materials based on deep learning model

计算机科学 极限抗拉强度 深度学习 人工智能 机器学习 复合材料 材料科学
作者
Xuewen Chen,Weizhong Fan
出处
期刊:Frontiers in Neurorobotics [Frontiers Media SA]
卷期号:16: 1000646-1000646 被引量:3
标识
DOI:10.3389/fnbot.2022.1000646
摘要

The properties of metallic materials have been extensively studied, and nowadays the tensile properties testing techniques of metallic materials still have not found a suitable research method. In this paper, the neural Turing machine model is first applied to explore the tensile properties of metallic materials and its usability is demonstrated. Then the neural Turing machine model was improved. The model is then improved so that the required results can be obtained faster and more explicitly. Based on the improved Neural Turing Machine model in the exploration of tensile properties of metal materials, it was found that both H-NTM and AH-NTM have less training time than NTM. A-NTM takes more training time than AH-NTM. The improvement reduces the training time of the model. In replication, addition, and multiplication, the training time is reduced by 6.0, 8.8, and 7.3%, respectively. When the indentation interval is 0.5–0.7 mm, the error of the initial indentation data is large. The error of the tensile properties of the material obtained after removing the data at this time is significantly reduced. When the indentation interval is 0.8–1.5 mm, the stress is closer to the real value of tensile test yield strength 219.9 Mpa and tensile test tensile strength 258.8 Mpa. this paper will improve the neural Turing machine model in the exploration of metal material tensile properties testing technology has some application value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fairy完成签到,获得积分10
刚刚
Vitalis完成签到,获得积分10
刚刚
CY发布了新的文献求助30
1秒前
科研通AI6应助bbbuuu采纳,获得10
2秒前
天天快乐应助Jiang采纳,获得10
3秒前
3秒前
3秒前
悦耳康发布了新的文献求助10
3秒前
5秒前
水濑心源发布了新的文献求助20
6秒前
李一一完成签到 ,获得积分10
7秒前
bkagyin应助眯眯眼的以彤采纳,获得10
7秒前
vigourc完成签到,获得积分10
8秒前
8秒前
科研通AI6应助zhang采纳,获得10
8秒前
tutoutou完成签到,获得积分20
8秒前
8秒前
9秒前
10秒前
卜天亦完成签到,获得积分10
10秒前
11秒前
淡淡土豆应助科研通管家采纳,获得10
11秒前
zj杰完成签到,获得积分20
11秒前
科目三应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得30
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
blackddl应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
淡淡土豆应助科研通管家采纳,获得10
12秒前
淡定绮波应助科研通管家采纳,获得20
12秒前
Kirito应助科研通管家采纳,获得100
12秒前
斯文败类应助单向度的人采纳,获得30
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
iNk应助科研通管家采纳,获得20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533498
求助须知:如何正确求助?哪些是违规求助? 4621711
关于积分的说明 14580035
捐赠科研通 4561794
什么是DOI,文献DOI怎么找? 2499622
邀请新用户注册赠送积分活动 1479350
关于科研通互助平台的介绍 1450588