Daily reservoir inflow prediction using stacking ensemble of machine learning algorithms

流入 堆积 计算机科学 集成学习 算法 人工智能 机器学习 地质学 化学 海洋学 有机化学
作者
D. Deb,A. Vasan,K. Srinivasa Raju
出处
期刊:Journal of Hydroinformatics [IWA Publishing]
卷期号:26 (5): 972-997 被引量:7
标识
DOI:10.2166/hydro.2024.210
摘要

ABSTRACT The present study aims to evaluate the potentiality of Bidirectional Long Short-Term Memory (Bi-LSTM), Convolutional Neural Networks (CNNs), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), and Random Forest (RF) for predicting daily inflows to the Sri Ram Sagar Project (SRSP), Telangana, India. Inputs to the model are rainfall, evaporation, time lag inflows, and climate indices. Seven combinations (S1–S7) of inputs were made. Fifteen and a half years of data were considered, out of which 11 years were used for training. Hyperparameter tuning is performed with the Tree-Structured Parzen Estimator. The performance of the algorithms is assessed using Kling–Gupta efficiency (KGE). Results indicate that Bi-LSTM with combination S7 performed better than others, as evident from KGE values of 0.92 and 0.87 during the training and testing, respectively. Furthermore, the Stacking Ensemble Mechanism (SEM) has also been employed to ascertain its efficacy over other chosen algorithms, resulting in KGE values of 0.94 and 0.89 during training and testing. It has also been able to simulate peak inflow events satisfactorily. Thus, SEM is a better alternative for reservoir inflow predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lldbc发布了新的文献求助10
刚刚
liyuqi61148完成签到,获得积分10
1秒前
郝憨憨发布了新的文献求助10
1秒前
上官若男应助morning采纳,获得10
1秒前
椒盐完成签到,获得积分10
3秒前
爱吃肉肉的手性分子完成签到,获得积分10
5秒前
兰高锋完成签到,获得积分10
6秒前
CU完成签到,获得积分20
6秒前
7秒前
机智的凡梦完成签到,获得积分10
7秒前
8秒前
lldbc完成签到,获得积分10
10秒前
迷路盼易完成签到,获得积分10
13秒前
13秒前
怡然大楚完成签到,获得积分10
14秒前
小杨完成签到,获得积分10
14秒前
所所应助Michael采纳,获得10
15秒前
传奇3应助Betty采纳,获得10
16秒前
姚友进发布了新的文献求助20
17秒前
17秒前
18秒前
维尼发布了新的文献求助10
19秒前
可爱丸子完成签到,获得积分10
20秒前
21秒前
笨笨忘幽发布了新的文献求助10
22秒前
爱撒娇的妙芹完成签到,获得积分10
23秒前
zlzly12发布了新的文献求助50
23秒前
zhovy发布了新的文献求助10
24秒前
25秒前
Michael发布了新的文献求助10
25秒前
Jasper应助小平采纳,获得30
25秒前
26秒前
辛勤的刺猬完成签到 ,获得积分10
27秒前
28秒前
大个应助啾啾采纳,获得10
28秒前
28秒前
28秒前
29秒前
斯坦933举报李fr求助涉嫌违规
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4549890
求助须知:如何正确求助?哪些是违规求助? 3980168
关于积分的说明 12322675
捐赠科研通 3649157
什么是DOI,文献DOI怎么找? 2009743
邀请新用户注册赠送积分活动 1045102
科研通“疑难数据库(出版商)”最低求助积分说明 933611