材料科学
微观结构
法拉第效率
阴极
制作
烧结
复合数
电解质
陶瓷
复合材料
阳极
纳米技术
化学工程
电极
工程类
医学
化学
替代医学
物理化学
病理
作者
Martin Ihrig,Enkhtsetseg Dashjav,Philipp Odenwald,Christian Dellen,Daniel Grüner,Jürgen Peter Gross,Thi Tuyet Hanh Nguyen,Yu-Hsing Lin,Walter Sebastian Scheld,Changhee Lee,Ruth Schwaiger,Abdelfattah Mahmoud,Jürgen Malzbender,Olivier Guillon,Sven Uhlenbruck,Martin Finsterbusch,Frank Tietz,Hsisheng Teng,Dina Fattakhova‐Rohlfing
标识
DOI:10.1021/acsami.3c18542
摘要
The phosphate lithium-ion conductor Li1.5Al0.5Ti1.5(PO4)3 (LATP) is an economically attractive solid electrolyte for the fabrication of safe and robust solid-state batteries, but high sintering temperatures pose a material engineering challenge for the fabrication of cell components. In particular, the high surface roughness of composite cathodes resulting from enhanced crystal growth is detrimental to their integration into cells with practical energy density. In this work, we demonstrate that efficient free-standing ceramic cathodes of LATP and LiFePO4 (LFP) can be produced by using a scalable tape casting process. This is achieved by adding 5 wt % of Li2WO4 (LWO) to the casting slurry and optimizing the fabrication process. LWO lowers the sintering temperature without affecting the phase composition of the materials, resulting in mechanically stable, electronically conductive, and free-standing cathodes with a smooth, homogeneous surface. The optimized cathode microstructure enables the deposition of a thin polymer separator attached to the Li metal anode to produce a cell with good volumetric and gravimetric energy densities of 289 Wh dm–3 and 180 Wh kg–1, respectively, on the cell level and Coulombic efficiency above 99% after 30 cycles at 30 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI