Reinforcement learning–based adaptive strategies for climate change adaptation: An application for coastal flood risk management

强化学习 适应(眼睛) 灵活性(工程) 计算机科学 气候变化 适应性管理 大洪水 适应能力 风险分析(工程) 环境资源管理 环境科学 人工智能 业务 经济 地理 生态学 物理 管理 光学 生物 考古
作者
Kairui Feng,Ning Lin,Robert E. Kopp,Siyuan Xian,Michael Oppenheimer
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (12)
标识
DOI:10.1073/pnas.2402826122
摘要

Conventional computational models of climate adaptation frameworks inadequately consider decision-makers’ capacity to learn, update, and improve decisions. Here, we investigate the potential of reinforcement learning (RL), a machine learning technique that efficaciously acquires knowledge from the environment and systematically optimizes dynamic decisions, in modeling and informing adaptive climate decision-making. We consider coastal flood risk mitigations for Manhattan, New York City, USA (NYC), illustrating the benefit of continuously incorporating observations of sea-level rise into systematic designs of adaptive strategies. We find that when designing adaptive seawalls to protect NYC, the RL-derived strategy significantly reduces the expected net cost by 6 to 36% under the moderate emissions scenario SSP2-4.5 (9 to 77% under the high emissions scenario SSP5-8.5), compared to conventional methods. When considering multiple adaptive policies, including accomodation and retreat as well as protection, the RL approach leads to a further 5% (15%) cost reduction, showing RL’s flexibility in coordinatively addressing complex policy design problems. RL also outperforms conventional methods in controlling tail risk (i.e., low probability, high impact outcomes) and in avoiding losses induced by misinformation about the climate state (e.g., deep uncertainty), demonstrating the importance of systematic learning and updating in addressing extremes and uncertainties related to climate adaptation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小柿子完成签到,获得积分10
1秒前
慕青应助不安的可乐采纳,获得10
1秒前
可可西里发布了新的文献求助10
2秒前
wanci应助刘若鑫采纳,获得10
2秒前
jkx发布了新的文献求助10
2秒前
3秒前
脑洞疼应助乐观伟诚采纳,获得10
3秒前
3秒前
橙花完成签到 ,获得积分10
4秒前
星辰大海应助Iridescent_采纳,获得10
4秒前
lizhiqian2024发布了新的文献求助10
5秒前
lsl发布了新的文献求助10
5秒前
冷添完成签到,获得积分10
6秒前
任梁辰发布了新的文献求助10
6秒前
mw完成签到,获得积分10
8秒前
科研通AI5应助yi采纳,获得10
8秒前
RIchard发布了新的文献求助10
8秒前
可爱的函函应助冬瓜采纳,获得10
9秒前
Ming Chen发布了新的文献求助10
9秒前
SciGPT应助舒适路人采纳,获得10
9秒前
10秒前
Ling完成签到,获得积分10
12秒前
maofeng完成签到,获得积分10
12秒前
英姑应助22222采纳,获得10
13秒前
lsl完成签到,获得积分10
14秒前
乐观伟诚发布了新的文献求助10
14秒前
椰子味完成签到,获得积分10
15秒前
15秒前
Ava应助粗暴的盼旋采纳,获得10
17秒前
17秒前
李健应助任梁辰采纳,获得10
20秒前
20秒前
21秒前
科研通AI5应助舒适路人采纳,获得10
22秒前
畅快山兰发布了新的文献求助10
23秒前
Sandwich发布了新的文献求助10
23秒前
自觉平露完成签到,获得积分10
23秒前
SYLH应助成就的冰绿采纳,获得10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329252
关于积分的说明 10241071
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268