1291 Towards an Autonomous Brain-Computer Interface for Chronic Stroke Neuromodulation: The Importance of Gamma Power in Movement Classification

医学 神经调节 脑-机接口 物理医学与康复 冲程(发动机) 接口(物质) 运动(音乐) 慢性中风 神经科学 物理疗法 康复 精神科 内科学 脑电图 中枢神经系统 机械工程 哲学 吉布斯等温线 化学 有机化学 吸附 美学 工程类 生物
作者
R.M. Suresh,Claudia Salazar,Matthew Triano,Nathan C. Rowland
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
卷期号:71 (Supplement_1): 211-211
标识
DOI:10.1227/neu.0000000000003360_1291
摘要

INTRODUCTION: Chronic stroke affects over 7 million people in the US. Brain computer interfaces (BCIs) have the potential to improve quality of life for affected individuals given their ability to augment existing neuromodulatory therapies such as transcranial direct current stimulation (tDCS). A simple yet flexible BCI leveraging machine learning (ML) classifiers to classify movement state would allow neuromodulation to be delivered autonomously and continuously. METHODS: 10 participants with chronic stroke and 11 healthy controls were included in this study. Participants were fitted with an EEG cap and tDCS anodal electrode positioned at the ipsilesional motor cortex. Participants were then randomly assigned to either the tDCS stimulation or sham groups. After receiving stimulation or sham therapy, participants used a VR headset to perform reach tasks while EEG data was sampled at 1024 Hz. The recorded EEG data were then z-score normalized and binned. PSD and coherence were extracted and subsequently used to train 13 ML models to classify movement state. RESULTS: We observed that gamma PSD produced the highest classification accuracies. Classification was improved for stroke patients and those who received tDCS. We did not observe significant differences between our ML models with regards to accuracy. CONCLUSIONS: Simple ML models are able to classify movement state in stroke patients from minimally pre-processed EEG data with gamma PSD being most indicative of movement state.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
苏南完成签到 ,获得积分10
3秒前
3秒前
keKEYANTONG发布了新的文献求助10
3秒前
田様应助LEE采纳,获得10
3秒前
科研胖子发布了新的文献求助10
4秒前
5秒前
Pluto完成签到,获得积分10
6秒前
缥缈老太发布了新的文献求助10
6秒前
7秒前
10秒前
务实青亦发布了新的文献求助10
10秒前
ocean12138发布了新的文献求助10
11秒前
Kamalika完成签到,获得积分10
11秒前
12秒前
渭水飞熊完成签到,获得积分10
12秒前
沐秋完成签到,获得积分10
12秒前
希稀惜发布了新的文献求助10
13秒前
13秒前
迷你的笑寒完成签到 ,获得积分10
13秒前
传奇3应助无聊的烷烃采纳,获得10
15秒前
17秒前
18秒前
19秒前
xu完成签到,获得积分10
19秒前
薄荷发布了新的文献求助10
20秒前
23秒前
25秒前
蜉蝣应助负责的方盒采纳,获得10
27秒前
Lucas应助迷你的笑寒采纳,获得10
31秒前
gcy完成签到,获得积分10
31秒前
斯文败类应助无奈傲菡采纳,获得10
31秒前
31秒前
负责的方盒完成签到,获得积分10
32秒前
LEE完成签到,获得积分10
33秒前
薄荷完成签到,获得积分20
34秒前
34秒前
沐秋发布了新的文献求助10
36秒前
126326完成签到,获得积分10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4523293
求助须知:如何正确求助?哪些是违规求助? 3964543
关于积分的说明 12287973
捐赠科研通 3628583
什么是DOI,文献DOI怎么找? 1996779
邀请新用户注册赠送积分活动 1033360
科研通“疑难数据库(出版商)”最低求助积分说明 923010