A retrospective study on predicting clinically significant prostate cancer via a bi-parametric ultrasound-based deep learning radiomics model

无线电技术 前列腺癌 医学 前列腺 回顾性队列研究 超声波 癌症 医学物理学 人工智能 肿瘤科 放射科 内科学 计算机科学
作者
Xiang Liu,Zhongxin Zhang,Bing Zheng,Min Xu,Xinyu Cao,Haiming Huang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fonc.2025.1538854
摘要

This study aimed to establish and evaluate a model utilizing bi-parametric ultrasound-based deep learning radiomics (DLR) in conjunction with clinical factors to anticipate clinically significant prostate cancer (csPCa). We retrospectively analyzed 232 participants from our institution who underwent both B-mode ultrasound and shear wave elastography (SWE) prior to prostate biopsy between June 2022 and December 2023. A random allocation placed the participants into training and test cohorts with a 7:3 distribution. We developed a nomogram that integrates DLR with clinical factors within the training cohort, which was subsequently validated using the test cohort. The diagnostic performance and clinical applicability were evaluated with receiver operating characteristic (ROC) curve analysis and decision curve analysis. In our study, the bi-parametric ultrasound-based DLR model demonstrated an area under the curve (AUC) of 0.80 (95%CI: 0.70-0.91) in the test set, surpassing the performance of both the radiomics and deep learning models individually. By integrating clinical factors, a composite model, presented as the nomogram, was developed and exhibited superior diagnostic performance, achieving an AUC of 0.87 (95%CI: 0.77-0.95) in the test set. The performance exceeded that of the DLR (P = 0.049) and the clinical model (AUC = 0.79, 95%CI: 0.69-0.86, P = 0.041). Furthermore, the decision curve analysis indicated that the composite model provided a greater net benefit across a various high-risk threshold than the DLR or the clinical model alone. To our knowledge, this is the first proposal of a nomogram integrating ultrasound-based DLR with clinical indicators for predicting csPCa. This nomogram can improve the accuracy of csPCa prediction and may help physicians make more confident decisions regarding interventions, particularly in settings where MRI is unavailable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助J324采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
华仔应助小瞎子_Zora采纳,获得10
3秒前
lehha完成签到 ,获得积分10
3秒前
4秒前
不配.应助奋斗的萝采纳,获得150
5秒前
蘑菇发布了新的文献求助10
5秒前
郜不正完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
唐泽雪穗应助everglow采纳,获得10
7秒前
8秒前
8秒前
思源应助Arvin采纳,获得10
10秒前
10秒前
永曼发布了新的文献求助10
11秒前
源主儿发布了新的文献求助10
11秒前
科研通AI2S应助闪闪采纳,获得10
12秒前
医海心潮发布了新的文献求助10
13秒前
zhzongjin发布了新的文献求助10
13秒前
小白菜完成签到 ,获得积分10
14秒前
一一发布了新的文献求助10
14秒前
芊予完成签到,获得积分10
14秒前
现代的半兰完成签到,获得积分10
15秒前
安白枫发布了新的文献求助10
17秒前
17秒前
NexusExplorer应助呼呼呼采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
Amy完成签到 ,获得积分10
18秒前
123完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
舒心雪冥发布了新的文献求助10
21秒前
shuang发布了新的文献求助10
24秒前
24秒前
闪闪发布了新的文献求助10
24秒前
Haibrar发布了新的文献求助20
24秒前
bkagyin应助研友_Z63kg8采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
An account of the genus Dioscorea in the East, Part 2. The species which twine to the right 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4268031
求助须知:如何正确求助?哪些是违规求助? 3799218
关于积分的说明 11908675
捐赠科研通 3446112
什么是DOI,文献DOI怎么找? 1890537
邀请新用户注册赠送积分活动 941240
科研通“疑难数据库(出版商)”最低求助积分说明 845509