Enhancing Nigrosome‐1 Sign Identification via Interpretable AI using True Susceptibility Weighted Imaging

接收机工作特性 磁化率加权成像 医学 磁共振成像 核医学 符号(数学) 神经影像学 放射科 模式识别(心理学) 人工智能 计算机科学 数学 内科学 数学分析 精神科
作者
Chenglong Wang,Naying He,Youmin Zhang,Yan Li,Pei Huang,Yu Liu,Zhijia Jin,Zenghui Cheng,Yun Liu,Yida Wang,Chengxiu Zhang,E. Mark Haacke,Shengdi Chen,Fuhua Yan,Guang Yang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29245
摘要

Nigrosome 1 (N1), the largest nigrosome region in the ventrolateral area of the substantia nigra pars compacta, is identifiable by the "N1 sign" in long echo time gradient echo MRI. The N1 sign's absence is a vital Parkinson's disease (PD) diagnostic marker. However, it is challenging to visualize and assess the N1 sign in clinical practice.To automatically detect the presence or absence of the N1 sign from true susceptibility weighted imaging by using deep-learning method.Prospective.453 subjects, including 225 PD patients, 120 healthy controls (HCs), and 108 patients with other movement disorders, were prospectively recruited including 227 males and 226 females. They were divided into training, validation, and test cohorts of 289, 73, and 91 cases, respectively.3D gradient echo SWI sequence at 3T; 3D multiecho strategically acquired gradient echo imaging at 3T; NM-sensitive 3D gradient echo sequence with MTC pulse at 3T.A neuroradiologist with 5 years of experience manually delineated substantia nigra regions. Two raters with 2 and 36 years of experience assessed the N1 sign on true susceptibility weighted imaging (tSWI), QSM with high-pass filter, and magnitude data combined with MTC data. We proposed NINet, a neural model, for automatic N1 sign identification in tSWI images.We compared the performance of NINet to the subjective reference standard using Receiver Operating Characteristic analyses, and a decision curve analysis assessed identification accuracy.NINet achieved an area under the curve (AUC) of 0.87 (CI: 0.76-0.89) in N1 sign identification, surpassing other models and neuroradiologists. NINet localized the putative N1 sign within tSWI images with 67.3% accuracy.Our proposed NINet model's capability to determine the presence or absence of the N1 sign, along with its localization, holds promise for enhancing diagnostic accuracy when evaluating PD using MR images.2 TECHNICAL EFFICACY: Stage 1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木草完成签到,获得积分20
2秒前
共享精神应助魔幻安南采纳,获得10
3秒前
3秒前
浮世之笙完成签到,获得积分10
3秒前
田様应助学习学习学习采纳,获得10
5秒前
6秒前
cxd发布了新的文献求助10
8秒前
大力的晓刚完成签到,获得积分10
10秒前
11秒前
典雅嫣完成签到,获得积分10
13秒前
研友_VZG7GZ应助黎明森采纳,获得10
14秒前
bing完成签到,获得积分10
14秒前
16秒前
FashionBoy应助WSDSG采纳,获得10
18秒前
18秒前
22秒前
zq完成签到 ,获得积分10
22秒前
bing发布了新的文献求助10
22秒前
23秒前
上官若男应助伦哥读论文采纳,获得10
24秒前
黎明森发布了新的文献求助10
26秒前
26秒前
123123发布了新的文献求助10
28秒前
解解闷完成签到,获得积分10
30秒前
善学以致用应助不想学习采纳,获得10
30秒前
研友_VZG7GZ应助Nowind采纳,获得30
32秒前
黎明森完成签到,获得积分10
33秒前
34秒前
pluto应助Ryan采纳,获得50
34秒前
朝阳区李知恩完成签到,获得积分0
35秒前
38秒前
Livrik发布了新的文献求助10
40秒前
42秒前
42秒前
lxiaok完成签到,获得积分10
43秒前
lwl666应助ArthurC采纳,获得10
43秒前
美少女战士完成签到,获得积分10
44秒前
天天快乐应助hjh采纳,获得10
45秒前
妖妖灵发布了新的文献求助10
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Walnut Culture In California: Walnut Blight 400
The Walnut Situation 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4797906
求助须知:如何正确求助?哪些是违规求助? 4117529
关于积分的说明 12738145
捐赠科研通 3847882
什么是DOI,文献DOI怎么找? 2120277
邀请新用户注册赠送积分活动 1142297
关于科研通互助平台的介绍 1031943