Emotional Video Captioning with Vision-based Emotion Interpretation Network

隐藏字幕 计算机科学 背景(考古学) 人工智能 相关性(法律) 词汇 可视化 边距(机器学习) 判决 水准点(测量) 代表(政治) 自然语言处理 图像(数学) 机器学习 语言学 古生物学 哲学 大地测量学 政治 政治学 法学 生物 地理
作者
Peipei Song,Dan Guo,Xun Yang,Shengeng Tang,Meng Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:8
标识
DOI:10.1109/tip.2024.3359045
摘要

Effectively summarizing and re-expressing video content by natural languages in a more human-like fashion is one of the key topics in the field of multimedia content understanding. Despite good progress made in recent years, existing efforts usually overlooked the emotions in user-generated videos, thus making the generated sentence a bit boring and soulless. To fill the research gap, this paper presents a novel emotional video captioning framework in which we design a Vision-based Emotion Interpretation Network to effectively capture the emotions conveyed in videos and describe the visual content in both factual and emotional languages. Specifically, we first model the emotion distribution over an open psychological vocabulary to predict the emotional state of videos. Then, guided by the discovered emotional state, we incorporate visual context, textual context, and visual-textual relevance into an aggregated multimodal contextual vector to enhance video captioning. Furthermore, we optimize the network in a new emotion-fact coordinated way that involves two losses— Emotional Indication Loss and Factual Contrastive Loss , which penalize the error of emotion prediction and visual-textual factual relevance, respectively. In other words, we innovatively introduce emotional representation learning into an end-to-end video captioning network. Extensive experiments on public benchmark datasets, EmVidCap and EmVidCap-S, demonstrate that our method can significantly outperform the state-of-the-art methods by a large margin. Quantitative ablation studies and qualitative analyses clearly show that our method is able to effectively capture the emotions in videos and thus generate emotional language sentences to interpret the video content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizhiqian2024发布了新的文献求助10
1秒前
2秒前
元复天发布了新的文献求助10
3秒前
4秒前
4秒前
丘比特应助瘦瘦涵雁采纳,获得10
5秒前
fafamimireredo完成签到,获得积分10
7秒前
大约在冬季完成签到,获得积分10
7秒前
搜集达人应助威士忌www采纳,获得10
8秒前
Hiker发布了新的文献求助10
8秒前
wp完成签到,获得积分10
9秒前
雨衣发布了新的文献求助10
10秒前
10秒前
英俊的铭应助jjgbmt采纳,获得10
12秒前
睡觉王发布了新的文献求助10
13秒前
Erin发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
科研通AI5应助朴素采文采纳,获得10
18秒前
多多完成签到,获得积分10
19秒前
威士忌www发布了新的文献求助10
21秒前
23秒前
23秒前
lizhiqian2024发布了新的文献求助10
23秒前
科研通AI5应助羞涩的问兰采纳,获得10
25秒前
26秒前
jjgbmt发布了新的文献求助10
26秒前
李健的小迷弟应助dd采纳,获得10
26秒前
有思想发布了新的文献求助30
27秒前
传奇3应助小龙采纳,获得10
28秒前
科研通AI2S应助无辜忆寒采纳,获得10
30秒前
30秒前
恶魔小艾发布了新的文献求助10
31秒前
威士忌www完成签到,获得积分10
31秒前
春景当思完成签到,获得积分10
33秒前
风和日li完成签到,获得积分0
35秒前
一向光年有限身完成签到,获得积分10
39秒前
39秒前
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791034
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276743
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761066