Recent progress in ultra-thin solid polymeric electrolytes for next-generation lithium batteries

材料科学 锂(药物) 快离子导体 纳米技术 电解质 聚合物电解质 化学工程 电极 离子电导率 物理化学 工程类 医学 化学 内分泌学
作者
Yuhui He,Yachao Dong,Liang Qiao,Carlos M. Costa,S. Lanceros‐Méndez,Jiecai Han,Weidong He
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:67: 103329-103329 被引量:1
标识
DOI:10.1016/j.ensm.2024.103329
摘要

All-solid-state lithium batteries (ASSLBs) have become fantastic energy storage devices with intrinsic safety and high energy density. The solid electrolyte is located between the cathode and anode and is decisive for conducting lithium ion, which is crucial to the energy density, fast-charging performance and safety of ASSLBs. Based on the current cathode and anode material system, the ultra-thinning of solid polymeric electrolytes (< 20 μm) is the only way to realize energy-dense properties (>500 Wh kg−1) and high-rate performance (charge at 5 C). The advantages of ultra-thin solid polymeric electrolytes (SPEs) in processability, cost and large-scale manufacturing make it the most likely material for commercial applications. However, it is difficult to destroy the restrictions between ion transport behavior and stress properties during the thinning of the SPE. Therefore, it is necessary to design a reasonable structure, regulate the electrolyte components, to achieve high ionic conductivity and high mechanical properties of the ultra-thin SPE. In this review, the blending structure, layer structure and chemical construction of new structures are summarized and prospected in detail, providing a reference for designing the advanced ASSLBs with high safety, high energy density and fast-charging property.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
big佳发布了新的文献求助10
5秒前
6秒前
今后应助samifranco采纳,获得10
6秒前
mingshiren发布了新的文献求助10
7秒前
9秒前
钵钵鸡应助焦哈哈采纳,获得10
10秒前
乐乐应助柏特瑞采纳,获得10
11秒前
mandalorian发布了新的文献求助10
12秒前
nanaki发布了新的文献求助10
14秒前
14秒前
yaswer发布了新的文献求助10
15秒前
酷波er应助诚心的月光采纳,获得10
16秒前
Hont发布了新的文献求助30
19秒前
20秒前
mandalorian完成签到,获得积分10
23秒前
柏特瑞发布了新的文献求助10
25秒前
29秒前
30秒前
31秒前
hyhyhyhy发布了新的文献求助10
34秒前
yaswer完成签到,获得积分10
34秒前
爱笑涵山发布了新的文献求助10
37秒前
Dr完成签到,获得积分10
37秒前
aidiiiiisk完成签到 ,获得积分10
37秒前
37秒前
大模型应助科研通管家采纳,获得10
38秒前
倩迷谜应助科研通管家采纳,获得20
38秒前
倩迷谜应助科研通管家采纳,获得20
38秒前
38秒前
38秒前
科目三应助科研通管家采纳,获得10
38秒前
赘婿应助科研通管家采纳,获得10
38秒前
38秒前
41秒前
喔喔发布了新的文献求助10
41秒前
42秒前
摇摇七喜发布了新的文献求助10
43秒前
45秒前
高分求助中
Hydrological Drought Processes and Estimation Methods for Streamflow and Groundwater 1000
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2383999
求助须知:如何正确求助?哪些是违规求助? 2090999
关于积分的说明 5256862
捐赠科研通 1817931
什么是DOI,文献DOI怎么找? 906832
版权声明 559045
科研通“疑难数据库(出版商)”最低求助积分说明 484116