Characteristics and influencing factors of demoralization in patients with lung cancer: A latent class analysis

潜在类模型 习得的无助感 肺癌 应对(心理学) 苦恼 失调家庭 临床心理学 医学 多项式logistic回归 社会阶层 心理学 肿瘤科 数学 统计 计算机科学 机器学习 法学 政治学
作者
Yu Hong,B. Ye,Jia Lin,Qiu Hong Chen,Juan Zhang,Wei‐Ti Chen,Fei Fei Huang
出处
期刊:Psycho-oncology [Wiley]
卷期号:33 (3) 被引量:7
标识
DOI:10.1002/pon.6312
摘要

Abstract Objective Demoralization has garnered increasing attention in recent years as a significant psychological distress. This study aims to identify latent classes of demoralization in lung cancer patients using Latent Class Analysis (LCA) from a person‐centered perspective and to explore the factors influencing the latent classes of demoralization. Methods A cross‐sectional study using convenience sampling was conducted among 567 lung cancer patients in three tertiary hospitals in China. LCA was employed to classify heterogeneous classes of demoralization. Multinomial logistic regression analyses were performed to explore the associations between demographic and clinical characteristics, as well as physical symptoms, resilience, family function, and coping strategies, with class membership in the identified heterogeneous subgroups of lung cancer patients. Results Three latent classes of demoralization were identified: the high demoralization group (Class 1, 14.8%), the moderate demoralization‐distress and helplessness group (Class 2, 37.2%), and the low demoralization group (Class 3, 48.0%). In comparison to Class 3, lung cancer patients with hypertension, higher core symptom burden, poorer resilience, dysfunctional family dynamics, and resignation coping were more likely to belong to Class 1 and Class 2. Conclusions The demoralization patterns in lung cancer patients were varied. Targeted intervention should be developed based on the characteristics of each class, and timely attention should be paid to high‐risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助dick_zhang采纳,获得30
刚刚
王翔完成签到,获得积分10
1秒前
2秒前
cwy完成签到,获得积分20
2秒前
小白发布了新的文献求助30
4秒前
直率钢笔完成签到,获得积分10
4秒前
4秒前
6秒前
0514gr完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
不想干活应助duanhahaha采纳,获得30
10秒前
Owen应助花城采纳,获得10
11秒前
11秒前
行者发布了新的文献求助10
11秒前
yhhhhhhh2024发布了新的文献求助10
11秒前
多喝岩浆发布了新的文献求助10
12秒前
过时的雨竹完成签到,获得积分10
12秒前
13秒前
onlylno完成签到,获得积分10
15秒前
Akim应助帅气蓝采纳,获得10
17秒前
17秒前
cc0514gr完成签到,获得积分10
17秒前
17秒前
18秒前
古几嘎完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助100
19秒前
19秒前
英姑应助yhhhhhhh2024采纳,获得10
19秒前
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
一叶知秋应助科研通管家采纳,获得20
20秒前
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
一叶知秋应助科研通管家采纳,获得20
20秒前
20秒前
20秒前
凌辰完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4663408
求助须知:如何正确求助?哪些是违规求助? 4045245
关于积分的说明 12512677
捐赠科研通 3737675
什么是DOI,文献DOI怎么找? 2064020
邀请新用户注册赠送积分活动 1093616
科研通“疑难数据库(出版商)”最低求助积分说明 974288