Three Epochs of Artificial Intelligence in Health Care

人工智能 转化式学习 意义(存在) 深度学习 相关性(法律) 生成语法 计算机科学 医疗保健 人工智能应用 任务(项目管理) 认知科学 医学 数据科学 心理学 发展心理学 经济增长 经济 管理 法学 心理治疗师 政治学
作者
Michael Howell,Greg S. Corrado,Karen B. DeSalvo
出处
期刊:JAMA [American Medical Association]
卷期号:331 (3): 242-242 被引量:54
标识
DOI:10.1001/jama.2023.25057
摘要

Importance Interest in artificial intelligence (AI) has reached an all-time high, and health care leaders across the ecosystem are faced with questions about where, when, and how to deploy AI and how to understand its risks, problems, and possibilities. Observations While AI as a concept has existed since the 1950s, all AI is not the same. Capabilities and risks of various kinds of AI differ markedly, and on examination 3 epochs of AI emerge. AI 1.0 includes symbolic AI, which attempts to encode human knowledge into computational rules, as well as probabilistic models. The era of AI 2.0 began with deep learning, in which models learn from examples labeled with ground truth. This era brought about many advances both in people’s daily lives and in health care. Deep learning models are task-specific, meaning they do one thing at a time, and they primarily focus on classification and prediction. AI 3.0 is the era of foundation models and generative AI. Models in AI 3.0 have fundamentally new (and potentially transformative) capabilities, as well as new kinds of risks, such as hallucinations. These models can do many different kinds of tasks without being retrained on a new dataset. For example, a simple text instruction will change the model’s behavior. Prompts such as “Write this note for a specialist consultant” and “Write this note for the patient’s mother” will produce markedly different content. Conclusions and Relevance Foundation models and generative AI represent a major revolution in AI’s capabilities, ffering tremendous potential to improve care. Health care leaders are making decisions about AI today. While any heuristic omits details and loses nuance, the framework of AI 1.0, 2.0, and 3.0 may be helpful to decision-makers because each epoch has fundamentally different capabilities and risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
润泽完成签到,获得积分10
5秒前
滕黎云发布了新的文献求助10
7秒前
小胖爱学习完成签到,获得积分10
7秒前
9秒前
一北发布了新的文献求助10
14秒前
完美天蓝完成签到 ,获得积分10
14秒前
赘婿应助钠钾蹦采纳,获得10
17秒前
21秒前
小马甲应助优秀藏鸟采纳,获得30
22秒前
Dorisyoolee完成签到,获得积分10
24秒前
24秒前
豌豆完成签到 ,获得积分10
24秒前
单纯从露关注了科研通微信公众号
24秒前
Dorisyoolee发布了新的文献求助10
26秒前
帅气的马里奥完成签到 ,获得积分10
27秒前
wenhao完成签到,获得积分10
28秒前
钠钾蹦发布了新的文献求助10
29秒前
怕黑不惜完成签到,获得积分10
29秒前
Neonoes完成签到,获得积分10
30秒前
34秒前
Panjiao完成签到 ,获得积分10
35秒前
单纯从露发布了新的文献求助10
37秒前
咯噔完成签到,获得积分10
38秒前
39秒前
乐观的涵柳完成签到 ,获得积分10
40秒前
ipcy完成签到 ,获得积分10
41秒前
Misea发布了新的文献求助10
43秒前
wy.he应助科研通管家采纳,获得10
49秒前
zhongu应助科研通管家采纳,获得10
49秒前
wanci应助科研通管家采纳,获得10
49秒前
Lucas应助科研通管家采纳,获得10
49秒前
zhongu应助科研通管家采纳,获得10
49秒前
今后应助科研通管家采纳,获得10
49秒前
wy.he应助科研通管家采纳,获得10
49秒前
笨笨芯应助科研通管家采纳,获得10
49秒前
桐桐应助科研通管家采纳,获得10
50秒前
50秒前
斤斤完成签到,获得积分10
52秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325210
关于积分的说明 10221856
捐赠科研通 3040345
什么是DOI,文献DOI怎么找? 1668745
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549