Assessing the impact of soil and field conditions on cotton crop emergence using UAV-based imagery

领域(数学) 作物 环境科学 农业工程 遥感 卫星图像 土壤科学 工程类 地质学 数学 地理 林业 纯数学
作者
Fengkai Tian,Curtis J. Ransom,Jianfeng Zhou,Bradley Wilson,Kenneth A. Sudduth
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108738-108738 被引量:7
标识
DOI:10.1016/j.compag.2024.108738
摘要

Crop seeding rate is one of the crucial factors that affect crop production. However, acquiring adequate crop data in multiple growing environments is time-consuming and challenging in large fields. This study aimed to develop and evaluate an efficient method using an unmanned aerial vehicle (UAV) imaging system and deep learning to assess cotton emergence spacing uniformity at different seeding rates. The study was conducted on a 3.27-hectare research field planted with two cotton cultivars at five seeding rates (56 k, 74 k, 91 k, 108 k, and 123 k seeds ha−1), with each treatment containing four rows with three replicates in a random block design. A UAV imaging system collected RGB images at 10 m and 15 m flight height above the ground level at two and six weeks after planting. Orthomosaic images from the two days were segmented into small blocks that were processed using the object detection algorithm YOLOv7 to identify cotton plants. Hough transform and polynomial regression were used to identify each cotton row and remove weeds. The number of plants in each 5-m row segment (i.e., stand count) was calculated to correlate with soil electrical conductivity (ECa) and field elevation. Results show that the research could detect cotton plants with the mean average precision of 96.9 % at the 50 % intersection over the union threshold (mAP@50) for the two-week dataset and 92.7 % mAP@50 for the six-week dataset. The results also show that plant uniformity was closely correlated with field elevation and ECa, with an average R2 of 0.62 using the Random Forest model. The coefficient of variation was used to evaluate the spacing uniformity of each seeding rate and demonstrated that the seed rates of 108 k and 123 k seeds ha−1 tended to exhibit better spacing uniformity than others under various environmental conditions. This study provides valuable insights by developing a pipeline for early-stage cotton stand count using high-resolution remote sensing techniques to evaluate the uniformity of different seeding rates for cotton, ultimately improving the efficiency of crop management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mal龙关注了科研通微信公众号
1秒前
1秒前
乾明少侠完成签到 ,获得积分10
2秒前
qphys完成签到,获得积分10
4秒前
852应助bcs3366采纳,获得10
4秒前
4秒前
zy发布了新的文献求助10
5秒前
机智的飞鸟完成签到 ,获得积分10
6秒前
sky完成签到,获得积分10
7秒前
7秒前
英姑应助Reese采纳,获得10
7秒前
SciGPT应助老迟到的惋清采纳,获得10
8秒前
默默的棒棒糖完成签到 ,获得积分10
8秒前
11秒前
11秒前
Owen应助文献狂人采纳,获得10
13秒前
陈敏完成签到,获得积分10
14秒前
guaner完成签到,获得积分20
14秒前
Xtals完成签到,获得积分10
15秒前
16秒前
Cheng完成签到 ,获得积分10
17秒前
17秒前
Akim应助布鲁采纳,获得10
17秒前
时差完成签到,获得积分10
18秒前
捏个小雪团完成签到 ,获得积分10
18秒前
kai完成签到,获得积分10
19秒前
苦哈哈完成签到,获得积分10
19秒前
打打应助俭朴朝雪采纳,获得10
20秒前
20秒前
上官若男应助LooQueSiento采纳,获得10
20秒前
21秒前
向禄临马发布了新的文献求助10
21秒前
杏苑鸽子完成签到,获得积分10
23秒前
笑对人生完成签到,获得积分10
23秒前
23秒前
shuo0976完成签到,获得积分10
23秒前
回答发布了新的文献求助10
24秒前
星辰大海应助大方研究生采纳,获得10
24秒前
25秒前
了该完成签到,获得积分10
25秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816874
求助须知:如何正确求助?哪些是违规求助? 3360257
关于积分的说明 10407382
捐赠科研通 3078228
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767924