亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative Three-Dimensional Morphological Tumor Features Predict Microvascular Invasion in Hepatocellular Carcinoma

接收机工作特性 逻辑回归 肝细胞癌 单变量 多元统计 医学 置信区间 多元分析 单变量分析 放射科 核医学 内科学 数学 统计
作者
Y H Li,Pengpeng Li,Junjie Ma,Yuanyuan Wang,Qiyu Tian,Jian Yu,Qinghui Zhang,Huazheng Shi,Weiping Zhou,Gang Huang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (5): 1862-1869 被引量:3
标识
DOI:10.1016/j.acra.2023.10.060
摘要

Rationale and Objectives The study was designed to evaluate microvascular invasion (MVI) using three-dimensional (3D) morphological indicators prior to surgery. Materials and Methods This retrospective study included 156 patients with hepatocellular carcinoma (HCC) at our hospital from 2017 to 2018. Through thin-layer CT scanning and 3D reconstruction, the tumor surface inclination angles can be quantitatively analyzed to determine the surface irregularity rate (SIR), which serves as a comprehensive assessment method for tumor irregularity based on preoperative 3D morphological evaluation. Univariate and multivariate logistic regression analyses were employed to investigate the correlation with MVI. Results The SIR was related to MVI (OR: 10.667, P < 0.001). Multivariate logistic regression analysis showed that the SIR was an independent risk factor for MVI. The area under the receiver operating characteristic curve (ROC) of prediction model composed of the morphological indicator SIR was 0.831 (95% confidence interval: 0.759–0.895). Conclusion The preoperative 3D morphological indicator SIR of a tumor is an accurate predictor of MVI, providing a valuable tool in clinical decision-making. The study was designed to evaluate microvascular invasion (MVI) using three-dimensional (3D) morphological indicators prior to surgery. This retrospective study included 156 patients with hepatocellular carcinoma (HCC) at our hospital from 2017 to 2018. Through thin-layer CT scanning and 3D reconstruction, the tumor surface inclination angles can be quantitatively analyzed to determine the surface irregularity rate (SIR), which serves as a comprehensive assessment method for tumor irregularity based on preoperative 3D morphological evaluation. Univariate and multivariate logistic regression analyses were employed to investigate the correlation with MVI. The SIR was related to MVI (OR: 10.667, P < 0.001). Multivariate logistic regression analysis showed that the SIR was an independent risk factor for MVI. The area under the receiver operating characteristic curve (ROC) of prediction model composed of the morphological indicator SIR was 0.831 (95% confidence interval: 0.759–0.895). The preoperative 3D morphological indicator SIR of a tumor is an accurate predictor of MVI, providing a valuable tool in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
LeonZhang完成签到 ,获得积分10
6秒前
抚琴祛魅完成签到 ,获得积分10
6秒前
8秒前
千倾完成签到 ,获得积分10
9秒前
fl发布了新的文献求助10
10秒前
15秒前
16秒前
bkagyin应助黄凯采纳,获得10
20秒前
nanfang完成签到 ,获得积分10
30秒前
科目三应助俏皮的一德采纳,获得10
32秒前
35秒前
36秒前
思源应助Ytgl采纳,获得10
37秒前
GGBoy完成签到 ,获得积分10
38秒前
wzppp发布了新的文献求助30
40秒前
莫里亚蒂发布了新的文献求助10
40秒前
AMzzZ完成签到 ,获得积分10
40秒前
wzppp完成签到,获得积分10
44秒前
827584450完成签到,获得积分10
45秒前
45秒前
Ytgl发布了新的文献求助10
51秒前
英俊的铭应助wing00024采纳,获得10
1分钟前
我啊完成签到 ,获得积分10
1分钟前
漂亮的元霜完成签到 ,获得积分20
1分钟前
Rgly完成签到 ,获得积分10
1分钟前
不是煤气罐罐完成签到 ,获得积分10
1分钟前
1分钟前
wing00024发布了新的文献求助10
1分钟前
zp6666tql完成签到 ,获得积分10
1分钟前
李健的粉丝团团长应助fl采纳,获得10
1分钟前
季风气候完成签到 ,获得积分10
1分钟前
doctor2023完成签到,获得积分10
1分钟前
1分钟前
不辣的完成签到 ,获得积分10
1分钟前
3113129605完成签到 ,获得积分10
1分钟前
1分钟前
黄凯完成签到,获得积分10
1分钟前
1分钟前
fl发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780779
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226507
捐赠科研通 3041459
什么是DOI,文献DOI怎么找? 1669398
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732