Molecular-based artificial neural networks for selecting deep eutectic solvents for the removal of contaminants from aqueous media

深共晶溶剂 离子液体 萃取(化学) 背景(考古学) 溶剂 水溶液 共晶体系 人工神经网络 材料科学 化学 计算机科学 工艺工程 人工智能 色谱法 有机化学 工程类 古生物学 合金 生物 催化作用
作者
Narjis E. Awaja,Ghaiath Almustafa,Ahmad S. Darwish,Tarek Lemaoui,Yacine Benguerba,Fawzi Banat,Hassan A. Arafat,Inas M. AlNashef
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:476: 146429-146429 被引量:14
标识
DOI:10.1016/j.cej.2023.146429
摘要

Computational methods for predicting a solvent's performance in a given application, and for selecting an adequate solvent for that application, are becoming increasingly essential for separation processes. In this context, this article presents a first-of-a-kind machine learning tool based on guided molecular design of solvents to predict the performance of various solvent systems in the solvent extraction process. The tool was demonstrated herein for the extraction of aqueous boron, through the selection of neoteric solvents from a dataset that spans different types of solvents (molecular solvents, deep eutectic solvents (DESs) and ionic liquids). The model was developed by first obtaining the COSMO-RS-based molecular descriptors (σ-profiles) for each solvent system and using them as input parameters to an Artificial Neural Network (ANN), in addition to other operational parameters (e.g., pH, temperature, ion concentration, and A/O ratio), while extraction efficiency as the output. The results showed that the optimal ANN configuration (59–20-15–1) exhibited remarkable predictability for boron extraction with an R2 of 0.988 and 0.977 for the training and testing sets, respectively. The model was used to investigate different solvent systems of which six new DESs were successfully synthesized, experimentally tested, and characterized across different properties such as density, viscosity, and leachability. The combination of Decanol and 2,2,4- trimethyl-1,3-pentanediol exhibited appreciable properties and high experimental extraction efficiency of 97.22%. The experimentally validated model demonstrates the effectiveness of molecular-based descriptors and machine learning for predicting the extraction capabilities of solvents in aqueous media and allows further exploration of new solvent systems based on their extraction performance at different operational conditions. This proof-of-concept approach can be effectively adopted to predict the extraction behavior of different solvent systems towards target contaminants in aqueous environments, thereby supporting both the design of separation processes and solvent screening for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
沐沐发布了新的文献求助10
1秒前
1秒前
Trista完成签到,获得积分10
1秒前
2秒前
see发布了新的文献求助10
2秒前
2秒前
3秒前
泯珉发布了新的文献求助10
3秒前
yinshan完成签到 ,获得积分10
3秒前
青于完成签到,获得积分10
3秒前
雕堡发布了新的文献求助10
3秒前
gougou发布了新的文献求助10
4秒前
Bobi发布了新的文献求助10
4秒前
友好聋五完成签到,获得积分10
5秒前
finger完成签到,获得积分10
5秒前
6秒前
乐观紫发布了新的文献求助10
6秒前
6秒前
ponysmile发布了新的文献求助10
7秒前
郦稀完成签到,获得积分10
7秒前
曦月完成签到,获得积分10
7秒前
李健应助Y123456采纳,获得10
8秒前
杰瑞完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
Jasper应助泯珉采纳,获得10
10秒前
情怀应助碎月采纳,获得10
10秒前
龙舞星完成签到,获得积分10
11秒前
11秒前
LordRedScience完成签到,获得积分10
11秒前
奥雷里亚诺的小金鱼完成签到,获得积分10
12秒前
瑶瑶酱完成签到,获得积分10
13秒前
小狐狸发布了新的文献求助10
13秒前
甲乙丙丁发布了新的文献求助10
14秒前
CodeCraft应助1leven采纳,获得10
14秒前
cdh1994完成签到,获得积分0
15秒前
燕子非关注了科研通微信公众号
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808375
求助须知:如何正确求助?哪些是违规求助? 3353104
关于积分的说明 10363207
捐赠科研通 3069307
什么是DOI,文献DOI怎么找? 1685461
邀请新用户注册赠送积分活动 810551
科研通“疑难数据库(出版商)”最低求助积分说明 766193