亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular-based artificial neural networks for selecting deep eutectic solvents for the removal of contaminants from aqueous media

深共晶溶剂 离子液体 萃取(化学) 背景(考古学) 溶剂 水溶液 共晶体系 人工神经网络 材料科学 化学 计算机科学 工艺工程 人工智能 色谱法 有机化学 工程类 古生物学 合金 生物 催化作用
作者
Narjis E. Awaja,Ghaiath Almustafa,Ahmad S. Darwish,Tarek Lemaoui,Yacine Benguerba,Fawzi Banat,Hassan A. Arafat,Inas M. AlNashef
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:476: 146429-146429 被引量:25
标识
DOI:10.1016/j.cej.2023.146429
摘要

Computational methods for predicting a solvent's performance in a given application, and for selecting an adequate solvent for that application, are becoming increasingly essential for separation processes. In this context, this article presents a first-of-a-kind machine learning tool based on guided molecular design of solvents to predict the performance of various solvent systems in the solvent extraction process. The tool was demonstrated herein for the extraction of aqueous boron, through the selection of neoteric solvents from a dataset that spans different types of solvents (molecular solvents, deep eutectic solvents (DESs) and ionic liquids). The model was developed by first obtaining the COSMO-RS-based molecular descriptors (σ-profiles) for each solvent system and using them as input parameters to an Artificial Neural Network (ANN), in addition to other operational parameters (e.g., pH, temperature, ion concentration, and A/O ratio), while extraction efficiency as the output. The results showed that the optimal ANN configuration (59–20-15–1) exhibited remarkable predictability for boron extraction with an R2 of 0.988 and 0.977 for the training and testing sets, respectively. The model was used to investigate different solvent systems of which six new DESs were successfully synthesized, experimentally tested, and characterized across different properties such as density, viscosity, and leachability. The combination of Decanol and 2,2,4- trimethyl-1,3-pentanediol exhibited appreciable properties and high experimental extraction efficiency of 97.22%. The experimentally validated model demonstrates the effectiveness of molecular-based descriptors and machine learning for predicting the extraction capabilities of solvents in aqueous media and allows further exploration of new solvent systems based on their extraction performance at different operational conditions. This proof-of-concept approach can be effectively adopted to predict the extraction behavior of different solvent systems towards target contaminants in aqueous environments, thereby supporting both the design of separation processes and solvent screening for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助Penny采纳,获得10
1秒前
12秒前
科研通AI5应助123采纳,获得10
12秒前
Penny发布了新的文献求助10
16秒前
lyp完成签到 ,获得积分10
32秒前
konosuba完成签到,获得积分0
33秒前
35秒前
王烜完成签到,获得积分10
39秒前
40秒前
40秒前
浮游应助王烜采纳,获得10
44秒前
奥特曼的奥特蛋完成签到,获得积分10
49秒前
55秒前
59秒前
andrele完成签到,获得积分10
1分钟前
andrele发布了新的文献求助30
1分钟前
都会完成签到 ,获得积分10
1分钟前
1分钟前
aoba发布了新的文献求助10
1分钟前
慕青应助自信的半凡采纳,获得10
1分钟前
陌路完成签到 ,获得积分10
1分钟前
1234567发布了新的文献求助20
1分钟前
情怀应助义气的泥猴桃采纳,获得50
1分钟前
SciGPT应助andrele采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英俊的涫完成签到,获得积分10
2分钟前
学术小祝发布了新的文献求助10
2分钟前
xiaoleihu完成签到 ,获得积分10
2分钟前
云淡风清完成签到 ,获得积分10
2分钟前
2分钟前
白枫完成签到 ,获得积分10
2分钟前
1234567完成签到,获得积分10
2分钟前
2分钟前
2分钟前
1234567发布了新的文献求助10
2分钟前
2分钟前
QIN完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4763504
求助须知:如何正确求助?哪些是违规求助? 4102537
关于积分的说明 12693883
捐赠科研通 3819275
什么是DOI,文献DOI怎么找? 2108062
邀请新用户注册赠送积分活动 1132570
关于科研通互助平台的介绍 1012136