Molecular-based artificial neural networks for selecting deep eutectic solvents for the removal of contaminants from aqueous media

深共晶溶剂 离子液体 萃取(化学) 背景(考古学) 溶剂 水溶液 共晶体系 人工神经网络 材料科学 化学 计算机科学 工艺工程 人工智能 色谱法 有机化学 工程类 古生物学 合金 生物 催化作用
作者
Narjis E. Awaja,Ghaiath Almustafa,Ahmad S. Darwish,Tarek Lemaoui,Yacine Benguerba,Fawzi Banat,Hassan A. Arafat,Inas M. AlNashef
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:476: 146429-146429 被引量:14
标识
DOI:10.1016/j.cej.2023.146429
摘要

Computational methods for predicting a solvent's performance in a given application, and for selecting an adequate solvent for that application, are becoming increasingly essential for separation processes. In this context, this article presents a first-of-a-kind machine learning tool based on guided molecular design of solvents to predict the performance of various solvent systems in the solvent extraction process. The tool was demonstrated herein for the extraction of aqueous boron, through the selection of neoteric solvents from a dataset that spans different types of solvents (molecular solvents, deep eutectic solvents (DESs) and ionic liquids). The model was developed by first obtaining the COSMO-RS-based molecular descriptors (σ-profiles) for each solvent system and using them as input parameters to an Artificial Neural Network (ANN), in addition to other operational parameters (e.g., pH, temperature, ion concentration, and A/O ratio), while extraction efficiency as the output. The results showed that the optimal ANN configuration (59–20-15–1) exhibited remarkable predictability for boron extraction with an R2 of 0.988 and 0.977 for the training and testing sets, respectively. The model was used to investigate different solvent systems of which six new DESs were successfully synthesized, experimentally tested, and characterized across different properties such as density, viscosity, and leachability. The combination of Decanol and 2,2,4- trimethyl-1,3-pentanediol exhibited appreciable properties and high experimental extraction efficiency of 97.22%. The experimentally validated model demonstrates the effectiveness of molecular-based descriptors and machine learning for predicting the extraction capabilities of solvents in aqueous media and allows further exploration of new solvent systems based on their extraction performance at different operational conditions. This proof-of-concept approach can be effectively adopted to predict the extraction behavior of different solvent systems towards target contaminants in aqueous environments, thereby supporting both the design of separation processes and solvent screening for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
激情的代曼完成签到,获得积分10
4秒前
8秒前
年轻半雪发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助justsoso采纳,获得10
10秒前
zzulyy发布了新的文献求助10
11秒前
莞尔wr1发布了新的文献求助10
13秒前
cc发布了新的文献求助10
15秒前
风中黎昕完成签到 ,获得积分10
15秒前
zzr元亨利贞完成签到,获得积分10
16秒前
kisschicken发布了新的文献求助10
18秒前
20秒前
小库里2025完成签到 ,获得积分10
22秒前
顾矜应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
24秒前
星辰大海应助科研通管家采纳,获得30
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
FIN应助科研通管家采纳,获得30
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
24秒前
25秒前
25秒前
饱满南松发布了新的文献求助10
25秒前
tutt发布了新的文献求助10
31秒前
酷波er应助饱满南松采纳,获得10
32秒前
赘婿应助单纯的爆米花采纳,获得10
34秒前
38秒前
白鹭立雪完成签到,获得积分10
41秒前
41秒前
斯文败类应助刘玥言采纳,获得10
41秒前
Captain发布了新的文献求助10
43秒前
44秒前
45秒前
Xx完成签到,获得积分10
52秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964821
求助须知:如何正确求助?哪些是违规求助? 3510255
关于积分的说明 11152666
捐赠科研通 3244550
什么是DOI,文献DOI怎么找? 1792442
邀请新用户注册赠送积分活动 873837
科研通“疑难数据库(出版商)”最低求助积分说明 804007