清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Attention-based generative adversarial networks improve prognostic outcome prediction of cancer from multimodal data

鉴别器 计算机科学 分类器(UML) 人工智能 特征选择 深度学习 机器学习 破译 模式识别(心理学) 人工神经网络 编码器 生物信息学 电信 生物 探测器 操作系统
作者
Mingguang Shi,Xuefeng Li,Mingna Li,Yixiong Si
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6) 被引量:3
标识
DOI:10.1093/bib/bbad329
摘要

The prediction of prognostic outcome is critical for the development of efficient cancer therapeutics and potential personalized medicine. However, due to the heterogeneity and diversity of multimodal data of cancer, data integration and feature selection remain a challenge for prognostic outcome prediction. We proposed a deep learning method with generative adversarial network based on sequential channel-spatial attention modules (CSAM-GAN), a multimodal data integration and feature selection approach, for accomplishing prognostic stratification tasks in cancer. Sequential channel-spatial attention modules equipped with an encoder-decoder are applied for the input features of multimodal data to accurately refine selected features. A discriminator network was proposed to make the generator and discriminator learning in an adversarial way to accurately describe the complex heterogeneous information of multiple modal data. We conducted extensive experiments with various feature selection and classification methods and confirmed that the CSAM-GAN via the multilayer deep neural network (DNN) classifier outperformed these baseline methods on two different multimodal data sets with miRNA expression, mRNA expression and histopathological image data: lower-grade glioma and kidney renal clear cell carcinoma. The CSAM-GAN via the multilayer DNN classifier bridges the gap between heterogenous multimodal data and prognostic outcome prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
14秒前
啊蒙发布了新的文献求助10
21秒前
34秒前
秋半雪发布了新的文献求助10
39秒前
啊蒙完成签到,获得积分10
39秒前
乐乐应助小居采纳,获得10
43秒前
46秒前
Funnymudpee发布了新的文献求助10
50秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
kzxhql发布了新的文献求助10
1分钟前
1分钟前
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
minnie完成签到 ,获得积分10
2分钟前
2分钟前
专注的觅云完成签到 ,获得积分10
2分钟前
怪怪完成签到,获得积分10
2分钟前
Nene完成签到 ,获得积分20
2分钟前
2分钟前
xxfsx应助kzxhql采纳,获得10
2分钟前
xxfsx应助kzxhql采纳,获得10
2分钟前
2分钟前
Funnymudpee发布了新的文献求助10
3分钟前
3分钟前
MTF完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Eileen完成签到 ,获得积分0
3分钟前
合不着完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624