A Contrast-Enhanced CT-Based Deep Learning System for Preoperative Prediction of Colorectal Cancer Staging and RAS Mutation

结直肠癌 医学 对比度(视觉) 突变 放射科 癌症 肿瘤科 内科学 人工智能 计算机科学 生物 遗传学 基因
作者
Na Lü,Xiao Guan,Zhu Jian-guo,Yuan Li,Jianping Zhang
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:15 (18): 4497-4497 被引量:2
标识
DOI:10.3390/cancers15184497
摘要

Purpose: This study aimed to build a deep learning system using enhanced computed tomography (CT) portal-phase images for predicting colorectal cancer patients’ preoperative staging and RAS gene mutation status. Methods: The contrast-enhanced CT image dataset comprises the CT portal-phase images from a retrospective cohort of 231 colorectal cancer patients. The deep learning system was developed via migration learning for colorectal cancer detection, staging, and RAS gene mutation status prediction. This study used pre-trained Yolov7, vision transformer (VIT), swin transformer (SWT), EfficientNetV2, and ConvNeXt. 4620, and contrast-enhanced CT images and annotated tumor bounding boxes were included in the tumor identification and staging dataset. A total of 19,700 contrast-enhanced CT images comprise the RAS gene mutation status prediction dataset. Results: In the validation cohort, the Yolov7-based detection model detected and staged tumors with a mean accuracy precision (IoU = 0.5) (mAP_0.5) of 0.98. The area under the receiver operating characteristic curve (AUC) in the test set and validation set for the VIT-based prediction model in predicting the mutation status of the RAS genes was 0.9591 and 0.9554, respectively. The detection network and prediction network of the deep learning system demonstrated great performance in explaining contrast-enhanced CT images. Conclusion: In this study, a deep learning system was created based on the foundation of contrast-enhanced CT portal-phase imaging to preoperatively predict the stage and RAS mutation status of colorectal cancer patients. This system will help clinicians choose the best treatment option to increase colorectal cancer patients’ chances of survival and quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
昏睡的蟠桃应助友好的翅膀采纳,获得200
3秒前
999发布了新的文献求助10
3秒前
wenruan发布了新的文献求助10
3秒前
axn完成签到,获得积分20
4秒前
tom发布了新的文献求助10
5秒前
Sene发布了新的文献求助20
5秒前
wang完成签到,获得积分20
5秒前
axn发布了新的文献求助10
6秒前
mushen发布了新的文献求助10
7秒前
7秒前
7秒前
103921wjk发布了新的文献求助10
8秒前
sun完成签到 ,获得积分10
8秒前
小鲤鱼完成签到,获得积分10
9秒前
10秒前
烂漫的冬易完成签到,获得积分10
10秒前
pluto应助陈影采纳,获得20
10秒前
wenruan完成签到,获得积分20
10秒前
源源完成签到,获得积分10
11秒前
星辰大海应助devilito采纳,获得30
11秒前
qianqian发布了新的文献求助20
13秒前
无限的寄真完成签到 ,获得积分10
14秒前
14秒前
lily336699完成签到,获得积分10
14秒前
塞尔达完成签到,获得积分10
15秒前
fishhh应助土豆采纳,获得10
16秒前
wzppp发布了新的文献求助30
18秒前
许自通完成签到,获得积分10
18秒前
爆米花应助wzppp采纳,获得30
22秒前
阿嚏完成签到,获得积分10
23秒前
342396102发布了新的文献求助10
26秒前
28秒前
盼盼完成签到 ,获得积分10
28秒前
CodeCraft应助DNAdamage采纳,获得10
28秒前
耳机单蹦完成签到,获得积分10
29秒前
天天快乐应助年轻的冰海采纳,获得20
34秒前
35秒前
35秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778900
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218406
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440