Accelerating Computational Materials Discovery with Machine Learning and Cloud High-Performance Computing: from Large-Scale Screening to Experimental Validation
Chi Chen,Dan Thien Nguyen,Shannon Lee,Nathan Baker,Ajay Karakoti,Linda Lauw,Craig Owen,Karl T. Mueller,Brian A. Bilodeau,Vijayakumar Murugesan,Matthias Troyer
High-throughput computational materials discovery has promised significant acceleration of the design and discovery of new materials for many years. Despite a surge in interest and activity, the constraints imposed by large-scale computational resources present a significant bottleneck. Furthermore, examples of very large-scale computational discovery carried out through experimental validation remain scarce, especially for materials with product applicability. Here, we demonstrate how this vision became reality by combining state-of-the-art machine learning (ML) models and traditional physics-based models on cloud high-performance computing (HPC) resources to quickly navigate through more than 32 million candidates and predict around half a million potentially stable materials. By focusing on solid-state electrolytes for battery applications, our discovery pipeline further identified 18 promising candidates with new compositions and rediscovered a decade's worth of collective knowledge in the field as a byproduct. We then synthesized and experimentally characterized the structures and conductivities of our top candidates, the Na