Concept-based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis

计算机科学 人工智能 计算机视觉 变压器 视网膜 病变 模式识别(心理学) 医学 眼科 病理 工程类 电压 电气工程
作者
C.-Y. Wen,Mang Ye,Li He,Ting Chen,Xuan Xiao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3429148
摘要

Existing deep learning methods have achieved remarkable results in diagnosing retinal diseases, showcasing the potential of advanced AI in ophthalmology. However, the black-box nature of these methods obscures the decision-making process, compromising their trustworthiness and acceptability. Inspired by the concept-based approaches and recognizing the intrinsic correlation between retinal lesions and diseases, we regard retinal lesions as concepts and propose an inherently interpretable framework designed to enhance both the performance and explainability of diagnostic models. Leveraging the transformer architecture, known for its proficiency in capturing long-range dependencies, our model can effectively identify lesion features. By integrating with image-level annotations, it achieves the alignment of lesion concepts with human cognition under the guidance of a retinal foundation model. Furthermore, to attain interpretability without losing lesion-specific information, our method employs a classifier built on a cross-attention mechanism for disease diagnosis and explanation, where explanations are grounded in the contributions of human-understandable lesion concepts and their visual localization. Notably, due to the structure and inherent interpretability of our model, clinicians can implement concept-level interventions to correct the diagnostic errors by simply adjusting erroneous lesion predictions. Experiments conducted on four fundus image datasets demonstrate that our method achieves favorable performance against state-of-the-art methods while providing faithful explanations and enabling conceptlevel interventions. Our code is publicly available at https://github.com/Sorades/CLAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助maomao采纳,获得10
2秒前
温馨家园完成签到 ,获得积分10
2秒前
5秒前
慕青应助不攻自破采纳,获得10
6秒前
潇洒的小鸽子完成签到 ,获得积分0
6秒前
媌哈哈关注了科研通微信公众号
7秒前
泯珉发布了新的文献求助10
10秒前
HLJemm应助科研通管家采纳,获得10
11秒前
小盛完成签到,获得积分10
11秒前
不想干活应助科研通管家采纳,获得10
12秒前
不想干活应助科研通管家采纳,获得10
12秒前
不想干活应助科研通管家采纳,获得10
12秒前
不想干活应助科研通管家采纳,获得50
12秒前
情怀应助科研通管家采纳,获得10
12秒前
Thea应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
13秒前
13秒前
kermitds完成签到 ,获得积分10
13秒前
ctc发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
ED应助乐平KYXK采纳,获得10
15秒前
15秒前
小佳完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
英姑应助gougoudy采纳,获得10
19秒前
ZMH完成签到,获得积分10
20秒前
20秒前
yjwang应助SIDEsss采纳,获得10
20秒前
20秒前
柴胡发布了新的文献求助10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171461
求助须知:如何正确求助?哪些是违规求助? 3706922
关于积分的说明 11695769
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860814
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754