Concept-based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis

计算机科学 人工智能 计算机视觉 变压器 视网膜 病变 模式识别(心理学) 医学 眼科 病理 工程类 电压 电气工程
作者
C.-Y. Wen,Mang Ye,Li He,Ting Chen,Xuan Xiao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3429148
摘要

Existing deep learning methods have achieved remarkable results in diagnosing retinal diseases, showcasing the potential of advanced AI in ophthalmology. However, the black-box nature of these methods obscures the decision-making process, compromising their trustworthiness and acceptability. Inspired by the concept-based approaches and recognizing the intrinsic correlation between retinal lesions and diseases, we regard retinal lesions as concepts and propose an inherently interpretable framework designed to enhance both the performance and explainability of diagnostic models. Leveraging the transformer architecture, known for its proficiency in capturing long-range dependencies, our model can effectively identify lesion features. By integrating with image-level annotations, it achieves the alignment of lesion concepts with human cognition under the guidance of a retinal foundation model. Furthermore, to attain interpretability without losing lesion-specific information, our method employs a classifier built on a cross-attention mechanism for disease diagnosis and explanation, where explanations are grounded in the contributions of human-understandable lesion concepts and their visual localization. Notably, due to the structure and inherent interpretability of our model, clinicians can implement concept-level interventions to correct the diagnostic errors by simply adjusting erroneous lesion predictions. Experiments conducted on four fundus image datasets demonstrate that our method achieves favorable performance against state-of-the-art methods while providing faithful explanations and enabling conceptlevel interventions. Our code is publicly available at https://github.com/Sorades/CLAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夏夜完成签到 ,获得积分10
1秒前
开放笑天发布了新的文献求助20
1秒前
1秒前
3秒前
斯文败类应助demo1采纳,获得10
3秒前
小马甲应助王小冉采纳,获得10
3秒前
glow发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
在水一方应助俏皮新儿采纳,获得10
5秒前
lyz完成签到,获得积分10
5秒前
好名字发布了新的文献求助10
6秒前
DDD42发布了新的文献求助10
6秒前
6秒前
李66发布了新的文献求助10
7秒前
隐形尔蝶完成签到 ,获得积分10
7秒前
ylc完成签到,获得积分10
8秒前
lyz发布了新的文献求助10
9秒前
ymh2884完成签到,获得积分10
9秒前
10秒前
wangjialin发布了新的文献求助10
10秒前
10秒前
10秒前
汉堡包应助XuLinan采纳,获得10
11秒前
11秒前
洋甘菊完成签到,获得积分10
11秒前
11秒前
可爱的函函应助冰红茶采纳,获得10
12秒前
13秒前
桐桐应助feng采纳,获得10
13秒前
噗噗发布了新的文献求助10
14秒前
demo1发布了新的文献求助10
14秒前
14秒前
情怀应助222采纳,获得10
14秒前
顾矜应助111采纳,获得10
14秒前
15秒前
小二郎应助科研虫儿采纳,获得10
15秒前
HEIKU应助kk采纳,获得10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791491
求助须知:如何正确求助?哪些是违规求助? 3335911
关于积分的说明 10277959
捐赠科研通 3052606
什么是DOI,文献DOI怎么找? 1675161
邀请新用户注册赠送积分活动 803188
科研通“疑难数据库(出版商)”最低求助积分说明 761111