亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-Throughput Screening and Prediction of Nucleophilicity of Amines Using Machine Learning and DFT Calculations

亲核细胞 胺气处理 数量结构-活动关系 密度泛函理论 化学 价值(数学) 计算化学 机器学习 催化作用 计算机科学 有机化学 立体化学
作者
Xu Li,Haoliang Zhong,Haoyu Yang,Lin Li,Qingji Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (16): 6361-6368 被引量:2
标识
DOI:10.1021/acs.jcim.4c00724
摘要

Nucleophilic index (NNu) as a significant parameter plays a crucial role in screening of amine catalysts. Indeed, the quantity and variety of amines are extensive. However, only limited amines exhibit an NNu value exceeding 4.0 eV, rendering them potential nucleophiles in chemical reactions. To address this issue, we proposed a computational method to quickly identify amines with high NNu values by using Machine Learning (ML) and high-throughput Density Functional Theory (DFT) calculations. Our approach commenced by training ML models and the exploration of Molecular Fingerprint methods as well as the development of quantitative structure–activity relationship (QSAR) models for the well-known amines based on NNu values derived from DFT calculations. Utilizing explainable Shapley Additive Explanation plots, we were able to determine the five critical substructures that significantly impact the NNu values of amine. The aforementioned conclusion can be applied to produce and cultivate 4920 novel hypothetical amines with high NNu values. The QSAR models were employed to predict the NNu values of 259 well-known and 4920 hypothetical amines, resulting in the identification of five novel hypothetical amines with exceptional NNu values (>4.55 eV). The enhanced NNu values of these novel amines were validated by DFT calculations. One novel hypothetical amine, H1, exhibits an unprecedentedly high NNu value of 5.36 eV, surpassing the maximum value (5.35 eV) observed in well-established amines. Our research strategy efficiently accelerates the discovery of the high nucleophilicity of amines using ML predictions, as well as the DFT calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
12秒前
45秒前
1分钟前
所所应助积极的凝海采纳,获得10
1分钟前
NaCl完成签到 ,获得积分10
1分钟前
开心每一天完成签到 ,获得积分10
1分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
于东完成签到,获得积分10
2分钟前
2分钟前
星辰大海应助于东采纳,获得10
2分钟前
jiaobu发布了新的文献求助10
2分钟前
学术骗子小刚完成签到,获得积分0
2分钟前
2分钟前
balko完成签到,获得积分10
3分钟前
华仔应助jiaobu采纳,获得10
3分钟前
萝卜丁完成签到 ,获得积分0
3分钟前
3分钟前
yyy发布了新的文献求助10
4分钟前
5分钟前
orixero应助Kevin采纳,获得10
5分钟前
满意人英完成签到,获得积分10
5分钟前
5分钟前
5分钟前
斯尼奇发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
andrele应助科研通管家采纳,获得10
6分钟前
bc应助科研通管家采纳,获得20
6分钟前
6分钟前
jiaobu发布了新的文献求助10
6分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
汉堡包应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
科目三应助斯尼奇采纳,获得10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340629
关于积分的说明 10300837
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762544