亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-Driven Knowledge Fusion for Deep Multi-Instance Learning

深度学习 人工智能 计算机科学 融合 机器学习 哲学 语言学
作者
Yu-Xuan Zhang,Zhengchun Zhou,Xingxing He,Avik Ranjan Adhikary,Bapi Dutta
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:3
标识
DOI:10.1109/tnnls.2024.3436944
摘要

Multi-instance learning (MIL) is a widely applied technique in practical applications that involve complex data structures. MIL can be broadly categorized into two types: traditional methods and those based on deep learning. These approaches have yielded significant results, especially regarding their problem-solving strategies and experiment validation, providing valuable insights for researchers in the MIL field. However, considerable knowledge is often trapped within the algorithm, leading to subsequent MIL algorithms that rely solely on the model's data fitting to predict unlabeled samples. This results in a significant loss of knowledge and impedes the development of more powerful models. In this article, we propose a novel data-driven knowledge fusion for deep MIL (DKMIL) algorithm. DKMIL adopts a completely different idea from existing deep MIL methods by analyzing the decision-making of key samples in the dataset (referred to as the data-driven) and using the knowledge fusion module designed to extract valuable information from these samples to assist the model's learning. In other words, this module serves as a new interface between data and the model, providing strong scalability and enabling prior knowledge from existing algorithms to enhance the model's learning ability. Furthermore, to adapt the downstream modules of the model to more knowledge-enriched features extracted from the data-driven knowledge fusion (DDKF) module, we propose a two-level attention (TLA) module that gradually learns shallow-and deep-level features of the samples to achieve more effective classification. We will prove the scalability of the knowledge fusion module and verify the efficiency of the proposed architecture by conducting experiments on 62 datasets across five categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助可靠的雪碧采纳,获得30
10秒前
48秒前
SUN发布了新的文献求助10
53秒前
上官若男应助科研通管家采纳,获得10
56秒前
SUN完成签到,获得积分10
59秒前
刘大妮完成签到,获得积分10
1分钟前
刘大妮发布了新的文献求助10
1分钟前
星岛完成签到 ,获得积分10
2分钟前
1.1关闭了1.1文献求助
2分钟前
Eileen完成签到 ,获得积分10
2分钟前
2分钟前
1.1发布了新的文献求助10
3分钟前
MchemG举报半载诗求助涉嫌违规
3分钟前
3分钟前
4分钟前
4分钟前
Wells应助pupil采纳,获得10
5分钟前
桐桐应助mkeale采纳,获得10
6分钟前
Shion完成签到,获得积分10
6分钟前
6分钟前
1yyyyyy发布了新的文献求助10
6分钟前
科研通AI2S应助FIN采纳,获得60
7分钟前
顺利的小蚂蚁完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
mkeale发布了新的文献求助10
7分钟前
mkeale完成签到,获得积分10
7分钟前
8分钟前
风清扬应助FIN采纳,获得60
8分钟前
疑夕完成签到,获得积分10
8分钟前
小蘑菇应助科研通管家采纳,获得10
8分钟前
9分钟前
111完成签到 ,获得积分10
10分钟前
10分钟前
岸上牛完成签到,获得积分10
10分钟前
深情安青应助科研通管家采纳,获得10
10分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
10分钟前
林一完成签到,获得积分10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4443772
求助须知:如何正确求助?哪些是违规求助? 3914669
关于积分的说明 12154815
捐赠科研通 3563040
什么是DOI,文献DOI怎么找? 1956034
邀请新用户注册赠送积分活动 995753
科研通“疑难数据库(出版商)”最低求助积分说明 891045