De Novo Drug Design by Multi-Objective Path Consistency Learning with Beam A∗ Search

一致性(知识库) 路径(计算) 药品 计算机科学 心理学 人工智能 医学 药理学 计算机网络
作者
Dengwei Zhao,Jingyuan Zhou,Shikui Tu,Lei Xu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcbb.2024.3477592
摘要

Generating high-quality and drug-like molecules from scratch within the expansive chemical space presents a significant challenge in the field of drug discovery. In prior research, value-based reinforcement learning algorithms have been employed to generate molecules with multiple desired properties iteratively. The immediate reward was defined as the evaluation of intermediate-state molecules at each step, and the learning objective would be maximizing the expected cumulative evaluation scores for all molecules along the generative path. However, this definition of the reward was misleading, as in reality, the optimization target should be the evaluation score of only the final generated molecule. Furthermore, in previous works, randomness was introduced into the decision-making process, enabling the generation of diverse molecules but no longer pursuing the maximum future rewards. In this paper, immediate reward is defined as the improvement achieved through the modification of the molecule to maximize the evaluation score of the final generated molecule exclusively. Originating from the A ∗ search, path consistency (PC), i.e., f values on one optimal path should be identical, is employed as the objective function in the update of the f value estimator to train a multi-objective de novo drug designer. By incorporating the f value into the decision-making process of beam search, the DrugBA∗ algorithm is proposed to enable the large-scale generation of molecules that exhibit both high quality and diversity. Experimental results demonstrate a substantial enhancement over the state-of-theart algorithm QADD in multiple molecular properties of the generated molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学必困完成签到 ,获得积分10
刚刚
Chang发布了新的文献求助10
刚刚
1秒前
文艺小霜完成签到 ,获得积分10
1秒前
swsx1317完成签到,获得积分10
2秒前
SYLH应助万能的悲剧采纳,获得50
2秒前
p53发布了新的文献求助20
2秒前
4秒前
马博的司机完成签到,获得积分10
4秒前
Kianna发布了新的文献求助10
8秒前
认认真真做科研完成签到,获得积分20
8秒前
从容芮应助眠眠清采纳,获得50
8秒前
9秒前
11秒前
酉灯完成签到,获得积分20
12秒前
Lucas应助xffy采纳,获得10
14秒前
x星妍发布了新的文献求助10
14秒前
aldehyde应助小潘采纳,获得10
15秒前
浮笙完成签到,获得积分10
15秒前
大模型应助研友_LJGoXn采纳,获得10
17秒前
MILA应助淮栀采纳,获得10
17秒前
17秒前
18秒前
魁梧的诗槐完成签到,获得积分20
19秒前
中国大陆应助合适磬采纳,获得10
20秒前
敏尔完成签到,获得积分10
20秒前
公西半雪完成签到 ,获得积分20
21秒前
23秒前
23秒前
26秒前
无花果应助叁川采纳,获得10
26秒前
26秒前
27秒前
健忘书兰发布了新的文献求助10
27秒前
30秒前
x星妍发布了新的文献求助10
31秒前
31秒前
毕业发布了新的文献求助10
32秒前
Lighten完成签到 ,获得积分10
32秒前
33秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897344
求助须知:如何正确求助?哪些是违规求助? 3441322
关于积分的说明 10821111
捐赠科研通 3166251
什么是DOI,文献DOI怎么找? 1749223
邀请新用户注册赠送积分活动 845222
科研通“疑难数据库(出版商)”最低求助积分说明 788508