组织工程
明胶
间充质干细胞
材料科学
细胞生物学
再生医学
背景(考古学)
促炎细胞因子
骨重建
重编程
骨愈合
干细胞
生物医学工程
细胞
炎症
化学
生物
生物化学
医学
免疫学
解剖
古生物学
遗传学
作者
Peihua Lin,Zhouyang Qian,Shanbiao Liu,Xin Ye,Pengpeng Xue,Yangjie Shao,J. Zhao,Yunan Guan,Zhichao Liu,Yuhua Chen,Qiyue Wang,Zhigao Yi,Mingjian Zhu,Mengfei Yu,Daishun Ling,Fangyuan Li
标识
DOI:10.1002/adma.202410962
摘要
Conventional bone tissue engineering materials struggle to reinstate physiological bone remodeling in a diabetic context, primarily due to the compromised repolarization of proinflammatory macrophages to anti-inflammatory macrophages. Here, leveraging single-cell RNA sequencing (scRNA-seq) technology, the pivotal role of nitric oxide (NO) and reactive oxygen species (ROS) is unveiled in impeding macrophage repolarization during physiological bone remodeling amidst diabetes. Guided by scRNA-seq analysis, we engineer a multienzymatic bone tissue engineering hydrogel scaffold (MEBTHS) composed is engineered of methylpropenylated gelatin hydrogel integrated with ruthenium nanozymes, possessing both Ru
科研通智能强力驱动
Strongly Powered by AbleSci AI