Knowledge Distillation Meets Open-Set Semi-supervised Learning

计算机科学 人工智能 蒸馏 集合(抽象数据类型) 机器学习 模式识别(心理学) 色谱法 化学 程序设计语言
作者
Jing Yang,Xiatian Zhu,Adrian Bulat,Brais Martínez,Georgios Tzimiropoulos
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
被引量:2
标识
DOI:10.1007/s11263-024-02192-7
摘要

Abstract Existing knowledge distillation methods mostly focus on distillation of teacher’s prediction and intermediate activation. However, the structured representation, which arguably is one of the most critical ingredients of deep models, is largely overlooked. In this work, we propose a novel semantic representational distillation (SRD) method dedicated for distilling representational knowledge semantically from a pretrained teacher to a target student. The key idea is that we leverage the teacher’s classifier as a semantic critic for evaluating the representations of both teacher and student and distilling the semantic knowledge with high-order structured information over all feature dimensions. This is accomplished by introducing a notion of cross-network logit computed through passing student’s representation into teacher’s classifier. Further, considering the set of seen classes as a basis for the semantic space in a combinatorial perspective, we scale SRD to unseen classes for enabling effective exploitation of largely available, arbitrary unlabeled training data. At the problem level, this establishes an interesting connection between knowledge distillation with open-set semi-supervised learning (SSL). Extensive experiments show that our SRD outperforms significantly previous state-of-the-art knowledge distillation methods on both coarse object classification and fine face recognition tasks, as well as less studied yet practically crucial binary network distillation. Under more realistic open-set SSL settings we introduce, we reveal that knowledge distillation is generally more effective than existing out-of-distribution sample detection, and our proposed SRD is superior over both previous distillation and SSL competitors. The source code is available at https://github.com/jingyang2017/SRD_ossl .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
脑洞疼应助苏幕遮采纳,获得10
7秒前
小闵完成签到,获得积分10
7秒前
sff发布了新的文献求助10
11秒前
起个名不麻烦完成签到 ,获得积分10
11秒前
张萌完成签到 ,获得积分10
12秒前
科目三应助科研通管家采纳,获得10
15秒前
Rita应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
冰魂应助科研通管家采纳,获得20
15秒前
wanci应助科研通管家采纳,获得10
15秒前
Rita应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
kingwill应助科研通管家采纳,获得20
15秒前
coolkid应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
Rita应助科研通管家采纳,获得10
16秒前
26秒前
28秒前
董致宇发布了新的文献求助10
29秒前
小飞完成签到 ,获得积分10
31秒前
花开富贵发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
34秒前
45秒前
FashionBoy应助踏实的老四采纳,获得10
46秒前
艺馨完成签到,获得积分10
51秒前
Lau完成签到,获得积分10
57秒前
ss完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
zf完成签到 ,获得积分10
1分钟前
顺利墨镜发布了新的文献求助10
1分钟前
包容丹云完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865015
求助须知:如何正确求助?哪些是违规求助? 3407392
关于积分的说明 10654120
捐赠科研通 3131465
什么是DOI,文献DOI怎么找? 1727064
邀请新用户注册赠送积分活动 832108
科研通“疑难数据库(出版商)”最低求助积分说明 780166