粘蛋白
染色质
康德星
细胞生物学
CTCF公司
生物
有丝分裂
染色体早凝
姐妹染色单体结合力的建立
动细胞
染色体分离
遗传学
突出的
染色体
DNA
增强子
转录因子
基因
古生物学
玄武岩
作者
Han Zhao,Lirong Shu,Fuhai Liu,En Lin,Sijian Xia,B. Wang,Manzhu Wang,Fengnian Shan,Yinzhi Lin,Lin Zhang,Yufei Gu,Gerd A. Blobel,Haoyue Zhang
标识
DOI:10.1101/2024.07.31.606012
摘要
Abstract Mammalian genomes are folded by the distinct actions of SMC complexes which include the chromatin loop-extruding cohesin, the sister-chromatid cohesive cohesin, and the mitotic chromosome-associated condensins. While these complexes function at different stages of the cell cycle, they co-exist on chromatin during the G2/M-phase transition, when genome structure undergoes a dramatic reorganization. Yet, how distinct SMC complexes affect each other and how their mutual interplay orchestrates the dynamic folding of 3D genome remains elusive. Here, we engineered all possible cohesin/condensin configurations on mitotic chromosomes to delineate the concerted, mutual influential action of SMC complexes. We find that: (i) The mitotic SMC complex condensin disrupts the focal accumulation of extrusive-cohesin at CTCF binding sites, thereby promoting the disassembly of interphase TADs and chromatin loops during mitotic progression. Conversely, extrusive-cohesin can impair condensin activity and alter mitotic chromosome helicity. (ii) Condensin diminishes cohesive-cohesin focal enrichment and, conversely, cohesive-cohesin can counteract condensin function and impede mitotic chromosome longitudinal shortening. (iii) The co-presence of extrusive- and cohesive-cohesin synergistically antagonizes condensin function and dramatically delays mitotic chromosome condensation. (iv) Extrusive-cohesin positions cohesive-cohesin at CTCF binding sites. However, cohesive-cohesin by itself is insufficient to mediate the formation of TADs or chromatin loop, implying non-overlapping function with extrusive-cohesin. Instead, cohesive-cohesin restricts chromatin loop expansion, potentially by limiting extrusive-cohesin movement. Collectively, our data describe a comprehensive three-way interplay among major SMC complexes that dynamically sculpts chromatin architecture during cell cycle progression.
科研通智能强力驱动
Strongly Powered by AbleSci AI