ThermoLink: Bridging disulfide bonds and enzyme thermostability through database construction and machine learning prediction

热稳定性 化学 蛋白质二硫键异构酶 半胱氨酸 共价键 蛋白质折叠 二硫键 组合化学 生物化学 有机化学
作者
Ran Xu,Qican Pan,Guoliang Zhu,Yilin Ye,Minghui Xin,Zechen Wang,Sheng Wang,Weifeng Li,Yanjie Wei,Jingjing Guo,Liangzhen Zheng
出处
期刊:Protein Science [Wiley]
卷期号:33 (9) 被引量:1
标识
DOI:10.1002/pro.5097
摘要

Abstract Disulfide bonds, covalently formed by sulfur atoms in cysteine residues, play a crucial role in protein folding and structure stability. Considering their significance, artificial disulfide bonds are often introduced to enhance protein thermostability. Although an increasing number of tools can assist with this task, significant amounts of time and resources are often wasted owing to inadequate consideration. To enhance the accuracy and efficiency of designing disulfide bonds for protein thermostability improvement, we initially collected disulfide bond and protein thermostability data from extensive literature sources. Thereafter, we extracted various sequence‐ and structure‐based features and constructed machine‐learning models to predict whether disulfide bonds can improve protein thermostability. Among all models, the neighborhood context model based on the Adaboost‐DT algorithm performed the best, yielding “area under the receiver operating characteristic curve” and accuracy scores of 0.773 and 0.714, respectively. Furthermore, we also found AlphaFold2 to exhibit high superiority in predicting disulfide bonds, and to some extent, the coevolutionary relationship between residue pairs potentially guided artificial disulfide bond design. Moreover, several mutants of imine reductase 89 (IR89) with artificially designed thermostable disulfide bonds were experimentally proven to be considerably efficient for substrate catalysis. The SS‐bond data have been integrated into an online server, namely, ThermoLink, available at guolab.mpu.edu.mo/thermoLink .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋子发布了新的文献求助10
1秒前
1秒前
4秒前
4秒前
123完成签到,获得积分10
5秒前
yier完成签到,获得积分10
7秒前
7秒前
活泼啤酒完成签到 ,获得积分10
7秒前
小璐璐呀发布了新的文献求助10
9秒前
Majin发布了新的文献求助10
11秒前
jenningseastera应助地啦啦啦采纳,获得10
11秒前
hotcas完成签到,获得积分10
13秒前
xc发布了新的文献求助10
13秒前
在水一方应助舒适路人采纳,获得10
14秒前
14秒前
火星上的安波完成签到 ,获得积分10
15秒前
dada完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
shencheng完成签到,获得积分20
22秒前
Shuchen完成签到,获得积分10
22秒前
nig完成签到,获得积分10
23秒前
23秒前
小孟吖完成签到 ,获得积分10
24秒前
HHHHHJ发布了新的文献求助10
25秒前
嘉敏发布了新的文献求助10
25秒前
酷波er应助达不溜qp采纳,获得10
26秒前
26秒前
slowfloat发布了新的文献求助10
26秒前
科研通AI5应助苏暖采纳,获得10
28秒前
丘比特应助chen采纳,获得10
28秒前
bobochicken完成签到,获得积分10
29秒前
liyun发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
31秒前
秋子发布了新的文献求助10
31秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783597
求助须知:如何正确求助?哪些是违规求助? 3328724
关于积分的说明 10238386
捐赠科研通 3044064
什么是DOI,文献DOI怎么找? 1670794
邀请新用户注册赠送积分活动 799874
科研通“疑难数据库(出版商)”最低求助积分说明 759171