Assessment of Anisotropic Acoustic Properties in Additively Manufactured Materials: Experimental, Computational, and Deep Learning Approaches

各向异性 超声波传感器 振幅 材料科学 人工神经网络 声学 信号(编程语言) 弹性(物理) 光学 计算机科学 物理 复合材料 人工智能 程序设计语言
作者
Ivan Malashin,В С Тынченко,Dmitry Martysyuk,N. A. Shchipakov,N. V. Krysko,Maxim Degtyarev,Vladimir Nelyub,Andrei Gantimurov,А. С. Бородулин,A.L. Galinovsky
出处
期刊:Sensors [MDPI AG]
卷期号:24 (14): 4488-4488 被引量:4
标识
DOI:10.3390/s24144488
摘要

The influence of acoustic anisotropy on ultrasonic testing reliability poses a challenge in evaluating products from additive technologies (AT). This study investigates how elasticity constants of anisotropic materials affect defect signal amplitudes in AT products. Experimental measurements on AT samples were conducted to determine elasticity constants. Using Computational Modeling and Simulation Software (CIVA), simulations explored echo signal changes across ultrasound propagation directions. The parameters A13 (the ratio between the velocities of ultrasonic transverse waves with vertical and horizontal polarizations at a 45-degree angle to the growth direction), A3 (the ratio for waves at a 90-degree angle), and Ag (the modulus of the difference between A13 and A3) were derived from wave velocity relationships and used to characterize acoustic anisotropy. Comparative analysis revealed a strong correlation (0.97) between the proposed anisotropy coefficient Ag and the amplitude changes. Threshold values of Ag were introduced to classify anisotropic materials based on observed amplitude changes in defect echo signals. In addition, a method leveraging deep learning to predict Ag based on data from other anisotropy constants through genetic algorithm (GA)-optimized neural network (NN) architectures is proposed, offering an approach that can reduce the computational costs associated with calculating such constants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的怀莲完成签到,获得积分10
刚刚
刚刚
天赐殊荣完成签到,获得积分10
1秒前
1秒前
1秒前
一起睡觉呀完成签到,获得积分10
1秒前
111发布了新的文献求助10
1秒前
die发布了新的文献求助30
2秒前
Yikepp完成签到,获得积分10
2秒前
jimmy发布了新的文献求助30
2秒前
上官若男应助听雨采纳,获得10
2秒前
2秒前
2秒前
香蕉冥王星完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
怂怂鼠发布了新的文献求助10
4秒前
科研通AI6应助潇洒书竹采纳,获得10
4秒前
5秒前
自由草莓发布了新的文献求助10
5秒前
5秒前
6秒前
CipherSage应助wuyany33采纳,获得10
6秒前
淡定的便当完成签到,获得积分10
7秒前
oio778发布了新的文献求助20
7秒前
lluuoo发布了新的文献求助10
7秒前
中科院王博完成签到,获得积分20
7秒前
7秒前
九玖关注了科研通微信公众号
8秒前
1900191497发布了新的文献求助10
8秒前
平淡雪枫完成签到 ,获得积分10
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
无极微光应助LL采纳,获得20
9秒前
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
Lny应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得15
9秒前
斯文败类应助七瑾采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546362
求助须知:如何正确求助?哪些是违规求助? 4632240
关于积分的说明 14625801
捐赠科研通 4573926
什么是DOI,文献DOI怎么找? 2507874
邀请新用户注册赠送积分活动 1484511
关于科研通互助平台的介绍 1455714