Deep learning‐based motion compensation for four‐dimensional cone‐beam computed tomography (4D‐CBCT) reconstruction

成像体模 人工智能 锥束ct 卷积神经网络 计算机科学 迭代重建 工件(错误) 计算机视觉 图像质量 均方误差 深度学习 模式识别(心理学) 核医学 数学 计算机断层摄影术 图像(数学) 医学 放射科 统计
作者
Zhehao Zhang,Jiaming Liu,Deshan Yang,Ulugbek S. Kamilov,Geoffrey D. Hugo
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 808-820 被引量:10
标识
DOI:10.1002/mp.16103
摘要

Abstract Background Motion‐compensated (MoCo) reconstruction shows great promise in improving four‐dimensional cone‐beam computed tomography (4D‐CBCT) image quality. MoCo reconstruction for a 4D‐CBCT could be more accurate using motion information at the CBCT imaging time than that obtained from previous 4D‐CT scans. However, such data‐driven approaches are hampered by the quality of initial 4D‐CBCT images used for motion modeling. Purpose This study aims to develop a deep‐learning method to generate high‐quality motion models for MoCo reconstruction to improve the quality of final 4D‐CBCT images. Methods A 3D artifact‐reduction convolutional neural network (CNN) was proposed to improve conventional phase‐correlated Feldkamp–Davis–Kress (PCF) reconstructions by reducing undersampling‐induced streaking artifacts while maintaining motion information. The CNN‐generated artifact‐mitigated 4D‐CBCT images (CNN enhanced) were then used to build a motion model which was used by MoCo reconstruction (CNN+MoCo). The proposed procedure was evaluated using in‐vivo patient datasets, an extended cardiac‐torso (XCAT) phantom, and the public SPARE challenge datasets. The quality of reconstructed images for XCAT phantom and SPARE datasets was quantitatively assessed using root‐mean‐square‐error (RMSE) and normalized cross‐correlation (NCC). Results The trained CNN effectively reduced the streaking artifacts of PCF CBCT images for all datasets. More detailed structures can be recovered using the proposed CNN+MoCo reconstruction procedure. XCAT phantom experiments showed that the accuracy of estimated motion model using CNN enhanced images was greatly improved over PCF. CNN+MoCo showed lower RMSE and higher NCC compared to PCF, CNN enhanced and conventional MoCo. For the SPARE datasets, the average (± standard deviation) RMSE in mm −1 for body region of PCF, CNN enhanced, conventional MoCo and CNN+MoCo were 0.0040 ± 0.0009, 0.0029 ± 0.0002, 0.0024 ± 0.0003 and 0.0021 ± 0.0003. Corresponding NCC were 0.84 ± 0.05, 0.91 ± 0.05, 0.91 ± 0.05 and 0.93 ± 0.04. Conclusions CNN‐based artifact reduction can substantially reduce the artifacts in the initial 4D‐CBCT images. The improved images could be used to enhance the motion modeling and ultimately improve the quality of the final 4D‐CBCT images reconstructed using MoCo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光以松发布了新的文献求助10
刚刚
支妙完成签到,获得积分10
1秒前
Kan发布了新的文献求助10
1秒前
完美世界应助别翘二郎腿采纳,获得10
2秒前
杪春完成签到 ,获得积分10
3秒前
时尚丹寒完成签到 ,获得积分10
3秒前
一点完成签到,获得积分10
4秒前
风轻云淡发布了新的文献求助20
4秒前
5秒前
酷波er应助as采纳,获得10
7秒前
Xu发布了新的文献求助20
8秒前
狂野的锦程完成签到,获得积分10
8秒前
9秒前
10秒前
坦率翠霜完成签到 ,获得积分10
11秒前
科目三应助无所吊谓采纳,获得10
12秒前
Akim应助安静凡旋采纳,获得10
12秒前
善学以致用应助虚幻之桃采纳,获得10
12秒前
12秒前
14秒前
负责觅海发布了新的文献求助10
15秒前
17秒前
17秒前
陈文清发布了新的文献求助10
18秒前
可爱多发布了新的文献求助10
19秒前
20秒前
Jsc完成签到 ,获得积分10
21秒前
Doct发布了新的文献求助10
22秒前
迟暮发布了新的文献求助10
23秒前
JHL发布了新的文献求助10
26秒前
nikki发布了新的文献求助30
27秒前
29秒前
共享精神应助小丸子采纳,获得10
31秒前
nenoaowu发布了新的文献求助10
34秒前
爆米花应助XieQinxie采纳,获得10
34秒前
37秒前
Qifan完成签到 ,获得积分10
39秒前
41秒前
chenchenchen发布了新的文献求助10
42秒前
44秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800230
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325664
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547