Improved multi-objective grasshopper optimization algorithm and application in capacity configuration of urban rail hybrid energy storage systems

局部最优 算法 莱维航班 数学优化 人口 遍历性 计算机科学 粒子群优化 数学 随机游动 统计 人口学 社会学
作者
Xin Wang,Xiyang Zhang,Bin Qin,Lingzhong Guo
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:72: 108363-108363 被引量:1
标识
DOI:10.1016/j.est.2023.108363
摘要

Aiming at addressing problems of poor diversity and ergodicity of initial population, slow convergence speed, and susceptibility to local optima in conventional multi-objective grasshopper optimization algorithm (MOGOA), an improved MOGOA is proposed in this paper. The proposed algorithm is based on Sobol sequence, adaptive social force, cosine parameter c, as well as Levy flight mechanism (SACLMOGOA), where Sobol sequence is adopted to initialize the population, thereby improving the diversity and ergodicity of the initial population. The adaptive social force is proposed to enhance the global exploration ability in the early stage of iteration and the local development ability in the late stage of iteration. A cosine type parameter c is used to ensure sufficient exploration time and rapid convergence of the algorithm during position update process and Levy flight is used to guide some grasshoppers to mutate, enhancing the ability to escape from the local optima and improving the performance and efficiency of the algorithm. The proposed algorithm is tested with ZDT and DTLZ series benchmark test functions to validate its effectiveness, and it is also compared with conventional MOGOA, multi-objective particle swarm optimization, multi-objective gray Wolf, and multi-objective jellyfish algorithms. The simulation results demonstrate that the proposed algorithm outperforms other algorithms in terms of inverse generational distance (IGD), spread (SP), maximum spread (MS), run time and Wilcoxon rank sum test. Furthermore, the proposed algorithm is successfully applied to the capacity configuration of the urban rail hybrid energy storage systems (HESS) of Changsha Metro Line 1 in China, reducing the traction network voltage fluctuations by 3.3 % and 2.2 % compared to no HESS capacity configuration optimization, and by 14 % and 5.7 % compared to no HESS during train starting and breaking, respectively. While achieving the goal of energy-saving and voltage stabilization, the cost of the hybrid energy storage systems is minimized as well. All of these have demonstrated SACLMOGOA is an effective tool for solving complex multi-objective optimization problems in engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllllnnnnj发布了新的文献求助10
刚刚
Orange应助xz采纳,获得10
1秒前
共享精神应助21采纳,获得10
2秒前
zheng2001完成签到,获得积分10
2秒前
2秒前
彩色黑米完成签到 ,获得积分10
2秒前
优美从菡完成签到,获得积分10
2秒前
荆轲刺秦王完成签到 ,获得积分10
3秒前
顺心曼香完成签到,获得积分10
3秒前
4秒前
zheng2001发布了新的文献求助10
5秒前
YQT完成签到 ,获得积分10
5秒前
CHY完成签到,获得积分20
7秒前
7秒前
8秒前
Gaga发布了新的文献求助10
9秒前
香蕉觅云应助You采纳,获得10
10秒前
12秒前
潇洒的马里奥完成签到,获得积分10
13秒前
Echo发布了新的文献求助30
13秒前
14秒前
喝可乐的萝卜兔完成签到 ,获得积分10
15秒前
李李关注了科研通微信公众号
20秒前
56jhjl完成签到,获得积分10
20秒前
科研通AI2S应助Bin_Liu采纳,获得10
20秒前
21秒前
湫湫完成签到 ,获得积分10
24秒前
lllllnnnnj完成签到,获得积分10
24秒前
斯文败类应助王佳豪采纳,获得10
29秒前
卡戎529完成签到 ,获得积分10
30秒前
zjq完成签到 ,获得积分10
31秒前
cldg完成签到,获得积分10
32秒前
共享精神应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
orixero应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
35秒前
科研通AI2S应助cldg采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734