材料科学
分离器(采油)
离子电导率
固化(化学)
电解质
化学工程
电导率
法拉第效率
热稳定性
聚合物
快离子导体
电化学
电化学窗口
惰性
电极
复合材料
有机化学
化学
物理
物理化学
工程类
热力学
作者
Shengyu Qin,Yinuo Yu,Jianying Zhang,Yunxiao Ren,Chang Sun,Shuoning Zhang,Lanying Zhang,Wei Hu,Huai Yang,Deng‐Ke Yang
标识
DOI:10.1002/aenm.202301470
摘要
Abstract Solid polymer electrolytes (SPEs) are expected to possess high ionic conductivity and conformal interfacial contact with all cell components for all‐solid‐state lithium‐ion batteries. However, the commonly used in situ separator‐assisted approach reduces the ionic conductivity because of the use of inert and non‐ion‐conducting separators. Here, a facile separator‐free dual‐curing strategy combining UV‐curing outside the cell and subsequent thermal‐curing inside the cell is reported, in which the second thermal polymerization process provides improved interfacial properties without sacrificing ionic conductivity. The resulting DC‐SPEs possess high ionic conductivity (0.3 mS cm −1 at 25 °C), a wide electrochemical stability window (4.64 V vs Li/Li + ), and improved interfacial properties. The in situ‐formed DC‐SPE can effectively suppress the growth of Li dendrites and achieve stable Li symmetric cell cycling performance at high current density (over 700 h at 0.2 mA cm −2 and 0.2 mAh cm −2 ). The all‐solid‐state lithium metal batteries (LMBs) with LiFePO 4 demonstrate high coulombic efficiency (>99.93%) and ultrastable cycling stability (900 cycles) at 1C rate under 40 °C. The dual‐curing strategy provides a brand new in situ processing method to avoid the use of expensive and inert separators, which can be widely applied to the development of all‐solid‐state LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI