Robust Radiomics Models for Predicting HIFU Prognosis in Uterine Fibroids Using SHAP Explanations: A Multicenter Cohort Study

无线电技术 多中心研究 子宫肌瘤 医学 队列 妇科 放射科 医学物理学 内科学 随机对照试验
作者
Huan Liu,Jincheng Zeng,Jinyun Chen,Xiaohua Liu,Yongbin Deng,Chenghai Li,Faqi Li
标识
DOI:10.1007/s10278-024-01318-0
摘要

This study sought to develop and validate different machine learning (ML) models that leverage non-contrast MRI radiomics to predict the degree of nonperfusion volume ratio (NVPR) of high-intensity focused ultrasound (HIFU) treatment for uterine fibroids, equipping clinicians with an early prediction tool for decision-making. This study conducted a retrospective analysis on 221 patients with uterine fibroids who received HIFU treatment and were divided into a training set (N = 117), internal validation (N = 49), and an external test set (N = 55). The 851 radiomics features were extracted from T2-weighted imaging (T2WI), and the max-relevance and min-redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. Several ML models were constructed by logistic regression (LR), decision tree (DT), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and light gradient boosting machine (LGBM). These models underwent internal and external validation, and the best model's feature significance was assessed via the Shapley additive explanations (SHAP) method. Four significant non-contrast MRI radiomics features were identified, with the SVM model outperforming others in both internal and external validations, and the AUCs of the T2WI models were 0.860, 0.847, and 0.777, respectively. SHAP analysis highlighted five critical predictors of postoperative NVPR degree, encompassing two radiomics features from non-contrast MRI and three clinical data indicators. The SVM model combining radiomics features and clinical parameters effectively predicts NVPR degree post-HIFU, which enables timely and effective interventions of HIFU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
5秒前
Percy完成签到 ,获得积分10
7秒前
range发布了新的文献求助10
8秒前
豆子发布了新的文献求助10
9秒前
qiao应助小草采纳,获得10
10秒前
wyx完成签到 ,获得积分10
12秒前
通关完成签到 ,获得积分10
12秒前
huiluowork完成签到 ,获得积分10
13秒前
复杂白风发布了新的文献求助10
14秒前
15秒前
复杂白风完成签到,获得积分10
25秒前
852应助豆子采纳,获得10
25秒前
26秒前
26秒前
曲聋五完成签到 ,获得积分0
35秒前
40秒前
41秒前
从容荠完成签到,获得积分10
42秒前
43秒前
Akiii_完成签到,获得积分10
43秒前
Yue发布了新的文献求助10
45秒前
云影cns完成签到 ,获得积分10
46秒前
47秒前
孙廷宇完成签到,获得积分10
47秒前
小趴菜发布了新的文献求助10
48秒前
littlexu发布了新的文献求助10
51秒前
慕青应助仔wang采纳,获得10
51秒前
沉默的小耳朵完成签到 ,获得积分10
52秒前
52秒前
54秒前
QiDW发布了新的文献求助10
57秒前
57秒前
qiao应助littlexu采纳,获得10
58秒前
英姑应助littlexu采纳,获得30
58秒前
58秒前
香蕉觅云应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
搜集达人应助科研通管家采纳,获得10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751