Machine Learning-Based SERS Chemical Space for Two-Way Prediction of Structures and Spectra of Untrained Molecules

化学 化学空间 分子 空格(标点符号) 谱线 计算化学 有机化学 生物化学 量子力学 物理 语言学 哲学 药物发现
作者
Jaslyn Ru Ting Chen,Emily Xi Tan,Jingxiang Tang,Shi Xuan Leong,Sean Kai Xun Hue,Chi Seng Pun,In Yee Phang,Xing Yi Ling
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c15804
摘要

Identifying unknown molecules beyond existing databases remains challenging in surface-enhanced Raman scattering (SERS) spectroscopy. Conventional SERS analysis relies on matching experimental and cataloged spectra, limiting identification to known molecules in databases. With a vast chemical space of >1060 molecules, it is impractical to obtain the spectra of every molecule and rely solely on in silico techniques for spectral predictions. Here, we showcase an ML-based SERS chemical space that leverages key spectra-structure correlations to achieve two-way spectra-to-structure and structure-to-spectra predictions for untrained molecules with a >90% average accuracy. Using a SERS chemical space comprising 38 linear molecules from four classes (alcohols, aldehydes, amines, and carboxylic acids), our experimental and in silico studies reveal underlying spectral features that enable the prediction of untrained molecules represented by two molecular descriptors (functional group and carbon chain length). For forward spectra-to-structure predictions, we devise a two-step "classification and regression" ML framework to sequentially predict the functional group and carbon chain length of untrained molecules with 100% accuracy and ≤1 carbon difference, respectively. In addition, using an eXtreme Gradient Boosting (XGBoost) regressor trained on the two molecular descriptors, we attain inverse structure-to-spectra prediction with a high average cosine similarity of 90.4% between the predicted and experimental spectra. Our ML-based SERS chemical space represents a shift in molecular identification from traditional spectral matching to predictive modeling of spectra-structure relationships. These insights could motivate the expansion of SERS chemical spaces and realize demands for present and future SERS technologiesfor accurate unknown identification across diverse fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Betty完成签到,获得积分10
2秒前
天天快乐应助hhhhhhhzhang123采纳,获得10
2秒前
5秒前
5秒前
caicai发布了新的文献求助10
6秒前
彩色完成签到 ,获得积分10
7秒前
隐形曼青应助meimei采纳,获得10
8秒前
天天快乐应助mariawang采纳,获得10
10秒前
kma完成签到,获得积分10
13秒前
凉雨渲完成签到,获得积分10
14秒前
18秒前
20秒前
深情安青应助平常冬云采纳,获得10
20秒前
晨曦完成签到 ,获得积分10
24秒前
26秒前
26秒前
王王碎冰冰完成签到,获得积分10
27秒前
牧羊青发布了新的文献求助10
28秒前
cj完成签到,获得积分10
29秒前
hhhhhhhzhang123完成签到,获得积分20
29秒前
30秒前
30秒前
33秒前
沉默的谷秋完成签到,获得积分10
33秒前
所所应助搞不好你们采纳,获得10
34秒前
科研通AI5应助稀饭采纳,获得10
35秒前
平常冬云发布了新的文献求助10
35秒前
123完成签到 ,获得积分10
37秒前
mariawang发布了新的文献求助10
37秒前
38秒前
平常冬云完成签到,获得积分10
43秒前
43秒前
45秒前
18969431868完成签到,获得积分10
47秒前
cz完成签到 ,获得积分10
48秒前
49秒前
纯真冰露完成签到,获得积分10
51秒前
爱吃橙子的苹果水完成签到 ,获得积分10
53秒前
西方印迹大王完成签到 ,获得积分10
53秒前
柚仝发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322050
关于积分的说明 10208614
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878