清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TransAnaNet: Transformer‐based anatomy change prediction network for head and neck cancer radiotherapy

头颈部癌 头颈部 放射治疗 医学 剂量学 医学物理学 放射科 外科
作者
Meixu Chen,Kai Wang,Michael Dohopolski,Howard E. Morgan,David J. Sher,Jing Wang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17655
摘要

Adaptive radiotherapy (ART) can compensate for the dosimetric impact of anatomic change during radiotherapy of head-neck cancer (HNC) patients. However, implementing ART universally poses challenges in clinical workflow and resource allocation, given the variability in patient response and the constraints of available resources. Therefore, the prediction of anatomical change during radiotherapy for HNC patients is of importance to optimize patient clinical benefit and treatment resources. Current studies focus on developing binary ART eligibility classification models to identify patients who would experience significant anatomical change, but these models lack the ability to present the complex patterns and variations in anatomical changes over time. Vision Transformers (ViTs) represent a recent advancement in neural network architectures, utilizing self-attention mechanisms to process image data. Unlike traditional Convolutional Neural Networks (CNNs), ViTs can capture global contextual information more effectively, making them well-suited for image analysis and image generation tasks that involve complex patterns and structures, such as predicting anatomical changes in medical imaging. The purpose of this study is to assess the feasibility of using a ViT-based neural network to predict radiotherapy-induced anatomic change of HNC patients. We retrospectively included 121 HNC patients treated with definitive chemoradiotherapy (CRT) or radiation alone. We collected the planning computed tomography image (pCT), planned dose, cone beam computed tomography images (CBCTs) acquired at the initial treatment (CBCT01) and Fraction 21 (CBCT21), and primary tumor volume (GTVp) and involved nodal volume (GTVn) delineated on both pCT and CBCTs of each patient for model construction and evaluation. A UNet-style Swin-Transformer-based ViT network was designed to learn the spatial correspondence and contextual information from embedded image patches of CT, dose, CBCT01, GTVp, and GTVn. The deformation vector field between CBCT01 and CBCT21 was estimated by the model as the prediction of anatomic change, and deformed CBCT01 was used as the prediction of CBCT21. We also generated binary masks of GTVp, GTVn, and patient body for volumetric change evaluation. We used data from 101 patients for training and validation, and the remaining 20 patients for testing. Image and volumetric similarity metrics including mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), Dice coefficient, and average surface distance were used to measure the similarity between the target image and predicted CBCT. Anatomy change prediction performance of the proposed model was compared to a CNN-based prediction model and a traditional ViT-based prediction model. The predicted image from the proposed method yielded the best similarity to the real image (CBCT21) over pCT, CBCT01, and predicted CBCTs from other comparison models. The average MSE, PSNR, and SSIM between the normalized predicted CBCT and CBCT21 are 0.009, 20.266, and 0.933, while the average Dice coefficient between body mask, GTVp mask, and GTVn mask is 0.972, 0.792, and 0.821, respectively. The proposed method showed promising performance for predicting radiotherapy-induced anatomic change, which has the potential to assist in the decision-making of HNC ART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
klandcy完成签到,获得积分10
8秒前
李李李完成签到,获得积分10
21秒前
myq完成签到 ,获得积分10
27秒前
不懂白完成签到 ,获得积分10
38秒前
Bio应助正直酬海采纳,获得30
58秒前
量子星尘发布了新的文献求助10
59秒前
creep2020完成签到,获得积分10
1分钟前
奈思完成签到 ,获得积分10
1分钟前
温不胜的破木吉他完成签到 ,获得积分10
1分钟前
2分钟前
zyx_4372发布了新的文献求助10
2分钟前
CodeCraft应助落寞凌波采纳,获得10
2分钟前
2分钟前
落寞凌波发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
快递乱跑完成签到 ,获得积分10
2分钟前
3分钟前
我是老大应助Augustin采纳,获得30
3分钟前
长夜完成签到 ,获得积分10
3分钟前
Sandy应助ljm采纳,获得50
3分钟前
3分钟前
顾矜应助hc采纳,获得10
3分钟前
Percy完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
xiaozou55完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
沙海沉戈完成签到,获得积分0
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
badgerwithfisher完成签到,获得积分10
6分钟前
al完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
hc发布了新的文献求助10
7分钟前
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4037772
求助须知:如何正确求助?哪些是违规求助? 3575579
关于积分的说明 11373670
捐赠科研通 3305459
什么是DOI,文献DOI怎么找? 1819194
邀请新用户注册赠送积分活动 892637
科研通“疑难数据库(出版商)”最低求助积分说明 815022