AdverseNet: A Unified LiDAR Point Cloud Denoising Network for Autonomous Driving in Adverse Weather

恶劣天气 激光雷达 云计算 气象学 点云 计算机科学 降噪 环境科学 遥感 大气模式 人工智能 地质学 地理 操作系统
作者
Xinyuan Yan,Junxing Yang,He Huang,Yu Liang,Yanjie Ma,Yida Li,Yidan Zhang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:: 1-1
标识
DOI:10.1109/jsen.2024.3505234
摘要

In the field of autonomous driving, a pressing issue is how to enable LiDAR to accurately perceive the 3D environment around the vehicle without being affected by rain, snow, and fog. Specifically, rain, snow, and fog can be present within the LiDAR's detection range and create noise points. To address this problem, we propose a unified denoising network, AdverseNet, for adverse weather point clouds, which is capable of removing noise points caused by rain, snow, and fog from LiDAR point clouds. In AdverseNet, we adopt the Cylindrical Tri-Perspective View (CTPV) representation for point clouds and employ a two-stage training strategy. In the first training stage, generic features of rain, snow, and fog noise points are learned. In the second training stage, specific weather features are learned. We conducted comparative experiments on the DENSE dataset and the SnowyKITTI dataset, and the results show that the performance of our method on both datasets is significantly improved compared to other methods, with the Mean Intersection-over-Union (MIoU) reaching 94.67% and 99.33%, respectively. Our proposed AdverseNet enhances the LiDAR sensing capability in rain, snow, and fog, ensuring the safe operation of autonomous vehicles in adverse weather conditions. The source code is available at https://github.com/Naclzno/AdverseNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃零食吃不下饭完成签到,获得积分10
刚刚
王大哥完成签到,获得积分10
1秒前
666完成签到,获得积分10
1秒前
科研小天才完成签到,获得积分10
2秒前
水薄荷完成签到,获得积分10
2秒前
青藤发布了新的文献求助20
2秒前
充电宝应助奉天采纳,获得10
3秒前
求知完成签到,获得积分10
3秒前
3秒前
rainny完成签到,获得积分10
3秒前
4秒前
丘比特应助nanalalal采纳,获得10
4秒前
alan完成签到,获得积分10
4秒前
7秒前
WH完成签到,获得积分10
7秒前
7秒前
8秒前
怡然剑成完成签到 ,获得积分10
8秒前
花开半夏完成签到,获得积分10
8秒前
9秒前
Amosummer完成签到,获得积分10
10秒前
席玉杭完成签到,获得积分10
10秒前
你说要叫啥完成签到,获得积分10
10秒前
小桶爸爸完成签到,获得积分10
11秒前
奉天完成签到,获得积分10
11秒前
11秒前
Hzz完成签到,获得积分10
11秒前
WH发布了新的文献求助10
12秒前
14秒前
CYJ完成签到,获得积分10
14秒前
14秒前
伊一完成签到,获得积分10
14秒前
15秒前
烂漫青槐完成签到,获得积分10
15秒前
15秒前
16秒前
大力云朵完成签到,获得积分10
16秒前
123123完成签到,获得积分10
16秒前
mg完成签到,获得积分10
16秒前
大气石头完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030480
求助须知:如何正确求助?哪些是违规求助? 3569183
关于积分的说明 11356923
捐赠科研通 3299799
什么是DOI,文献DOI怎么找? 1816891
邀请新用户注册赠送积分活动 890975
科研通“疑难数据库(出版商)”最低求助积分说明 813983