YOLO-MST: Multiscale deep learning method for infrared small target detection based on super-resolution and YOLO

红外线的 人工智能 分辨率(逻辑) 深度学习 计算机科学 高分辨率 遥感 计算机视觉 地理 物理 光学
作者
Tao Yue,Xiaojin Lu,J. Cai,Yuanping Chen,Shibing Chu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.19878
摘要

With the advancement of aerospace technology and the increasing demands of military applications, the development of low false-alarm and high-precision infrared small target detection algorithms has emerged as a key focus of research globally. However, the traditional model-driven method is not robust enough when dealing with features such as noise, target size, and contrast. The existing deep-learning methods have limited ability to extract and fuse key features, and it is difficult to achieve high-precision detection in complex backgrounds and when target features are not obvious. To solve these problems, this paper proposes a deep-learning infrared small target detection method that combines image super-resolution technology with multi-scale observation. First, the input infrared images are preprocessed with super-resolution and multiple data enhancements are performed. Secondly, based on the YOLOv5 model, we proposed a new deep-learning network named YOLO-MST. This network includes replacing the SPPF module with the self-designed MSFA module in the backbone, optimizing the neck, and finally adding a multi-scale dynamic detection head to the prediction head. By dynamically fusing features from different scales, the detection head can better adapt to complex scenes. The mAP@0.5 detection rates of this method on two public datasets, SIRST and IRIS, reached 96.4% and 99.5% respectively, more effectively solving the problems of missed detection, false alarms, and low precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YOY完成签到,获得积分10
1秒前
给我个二硫碘化钾完成签到,获得积分10
2秒前
梓七关注了科研通微信公众号
3秒前
4秒前
阮人雄发布了新的文献求助10
10秒前
英俊的铭应助qiulong采纳,获得10
12秒前
CaoRouLi完成签到,获得积分10
13秒前
大模型应助阮人雄采纳,获得10
14秒前
瘪良科研完成签到,获得积分10
17秒前
cjw完成签到 ,获得积分10
18秒前
19秒前
20秒前
花花完成签到,获得积分10
22秒前
22秒前
小杨发布了新的文献求助10
25秒前
sophia完成签到 ,获得积分10
28秒前
28秒前
SC完成签到,获得积分10
28秒前
科研小废物完成签到,获得积分10
28秒前
JHGG应助Star采纳,获得30
32秒前
kkkkkk发布了新的文献求助10
33秒前
aprise完成签到 ,获得积分10
36秒前
hyp7347关注了科研通微信公众号
36秒前
bkagyin应助小杨采纳,获得10
38秒前
语物完成签到,获得积分10
38秒前
具体问题具体分析完成签到 ,获得积分10
39秒前
adam完成签到,获得积分10
39秒前
111发布了新的文献求助20
40秒前
科目三应助科研通管家采纳,获得10
40秒前
40秒前
cdercder应助科研通管家采纳,获得20
40秒前
cdercder应助科研通管家采纳,获得20
40秒前
40秒前
传奇3应助科研通管家采纳,获得10
40秒前
天天快乐应助科研通管家采纳,获得10
40秒前
Young完成签到,获得积分10
40秒前
彭于晏应助科研通管家采纳,获得10
40秒前
Akim应助科研通管家采纳,获得10
40秒前
星辰大海应助科研通管家采纳,获得10
40秒前
40秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445