The proper application of logistic regression model in complex survey data: a systematic review

逻辑回归 统计 计算机科学 回归分析 医学 数学
作者
Dibyendu Dey,Md. Enamul Haque,Md. Shafiqul Islam,Umme Iffat Aishi,Sajida Sultana Shammy,Md. Sabbir Ahmed Mayen,Syed Toukir Ahmed Noor,Md. Jamal Uddin
出处
期刊:BMC Medical Research Methodology [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12874-024-02454-5
摘要

Logistic regression is a useful statistical technique commonly used in many fields like healthcare, marketing, or finance to generate insights from binary outcomes (e.g., sick vs. not sick). However, when applying logistic regression to complex survey data, which includes complex sampling designs, specific methodological issues are often overlooked. The systematic review extensively searched the PubMed and ScienceDirect databases from January 2015 to December 2021, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, focusing primarily on the Demographic and Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS). 810 articles met the inclusion criteria and were included in the analysis. When discussing logistic regression, the review considered multiple methodological problems such as the model adequacy assessment, handling dependence of observations, utilization of complex survey design, dealing with missing values, outliers, and more. Among the selected articles, the DHS database was used the most (96%), with MICS accounting for only 3%, and both DHS and MICS accounting for 1%. Of these, it was found that only 19.7% of the studies employed multilevel mixed-effects logistic regression to account for data dependencies. Model validation techniques were not reported in 94.8% of the studies with limited uses of the bootstrap, jackknife, and other resampling methods. Moreover, sample weights, PSUs, and strata variables were used together in 40.4% of the articles, and 41.7% of the studies did not use any of these variables, which could have produced biased results. Goodness-of-fit assessments were not mentioned in 75.3% of the articles, and the Hosmer–Lemeshow and likelihood ratio test were the most common among those reported. Furthermore, 95.8% of studies did not mention outliers, and only 41.0% of studies corrected for missing information, while only 2.7% applied imputation techniques. This systematic review highlights important gaps in the use of logistic regression with complex survey data, such as overlooking data dependencies, survey design, and proper validation techniques, along with neglecting outliers, missing data, and goodness-of-fit assessments, all of which point to the need for clearer methodological standards and more thorough reporting to improve the reliability of results. Future research should focus on consistently following these standards to ensure stronger and more dependable findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鱼鱼鱼鱼鱼鱼鱼鱼完成签到 ,获得积分10
1秒前
5秒前
pylchm完成签到,获得积分10
5秒前
紫薇的舔狗完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
虚幻火龙果完成签到,获得积分10
10秒前
TheGan完成签到,获得积分10
11秒前
11秒前
12秒前
丘比特应助凶狠的乐巧采纳,获得10
13秒前
清脆的连虎完成签到,获得积分10
14秒前
15秒前
TheGan发布了新的文献求助10
15秒前
16秒前
17秒前
12完成签到,获得积分10
17秒前
stk完成签到,获得积分10
18秒前
19秒前
英俊的铭应助pipichang采纳,获得10
19秒前
顺利盼柳发布了新的文献求助10
20秒前
xixihaha发布了新的文献求助10
20秒前
Izzie发布了新的文献求助10
20秒前
21秒前
22秒前
莱克斯发布了新的文献求助10
23秒前
SYLH应助乐观的小松鼠采纳,获得10
23秒前
yyyyyyy发布了新的文献求助10
25秒前
26秒前
28秒前
拼搏的金针菇完成签到 ,获得积分10
30秒前
iuh关注了科研通微信公众号
30秒前
航_123发布了新的文献求助10
30秒前
31秒前
hcc关闭了hcc文献求助
32秒前
顾矜应助央央采纳,获得10
33秒前
35秒前
35秒前
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4007198
求助须知:如何正确求助?哪些是违规求助? 3546836
关于积分的说明 11297281
捐赠科研通 3282322
什么是DOI,文献DOI怎么找? 1810060
邀请新用户注册赠送积分活动 885829
科研通“疑难数据库(出版商)”最低求助积分说明 811126