ESW-YOLO: A lightweight YOLO model for defect detection in bottled liquor

瓶装水 环境科学 业务 环境工程
作者
Xuyang Wang,Xuerui Lan,Lijun Liu
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5369988/v1
摘要

Abstract With the growing adoption of deep learning in AI, flaw detection in bottled liquor production has become crucial to ensure product quality and consumer satisfaction. However, existing flaw detection models often face issues of low efficiency, particularly in multi-category and multi-target scenarios, and struggle with integration into resource-constrained devices. To solve these challenges, this study proposes ESW-YOLO, a lightweight model optimized to detect diverse flaws in bottled liquor production. This model is designed as follows: firstly, the Efficient Multi-Branch \& Scale FPN (EMBSFPN) is developed to reduce model size while increasing the detection accuracy of small flaws. Secondly, the SE attention mechanism is incorporated to emphasize critical features, which strengthens the model’s robustness in complex scenarios. Thirdly, the Wise-IoU loss function is used to optimize localization accuracy, particularly for irregular defects. Finally, a lightweight shared convolutional detection head (ESCD) is proposed to further decrease model size and improve detection efficiency. Experimental results on a bottled liquor flaw detection dataset demonstrate that ESW-YOLO achieves a mean average precision (mAP) of 94.7% and a recall of 91.8%. Additionally, the proposed model reduces computational cost by 30.8%, decreases parameter count by 45.1%, and maintains a compact model size of only 3.6 M. This method can provide a reference for the development of defect detection methods in bottled liquor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕皓轩发布了新的文献求助30
刚刚
1秒前
2秒前
昔年完成签到 ,获得积分10
3秒前
NexusExplorer应助伯约采纳,获得10
5秒前
6秒前
8秒前
10秒前
123456完成签到,获得积分10
11秒前
脑洞疼应助香蕉以菱采纳,获得10
11秒前
11秒前
cxw发布了新的文献求助10
12秒前
呆萌滑板完成签到 ,获得积分10
13秒前
zy发布了新的文献求助10
13秒前
热情的阿猫桑完成签到,获得积分10
14秒前
所所应助zy采纳,获得10
20秒前
超帅怜阳完成签到,获得积分10
22秒前
科目三应助木木三采纳,获得10
23秒前
24秒前
ling2001完成签到,获得积分10
25秒前
26秒前
雨季佯发布了新的文献求助10
27秒前
孤独士晋发布了新的文献求助10
29秒前
欣喜电源完成签到,获得积分10
35秒前
搬砖人完成签到,获得积分10
36秒前
安屿发布了新的文献求助10
36秒前
小李在哪儿完成签到 ,获得积分10
41秒前
勤劳凡雁完成签到,获得积分10
41秒前
43秒前
爆米花应助黑妖采纳,获得10
46秒前
48秒前
Chris完成签到,获得积分10
48秒前
想飞的猪完成签到,获得积分10
49秒前
50秒前
想飞的猪发布了新的文献求助30
51秒前
51秒前
52秒前
晴天晒太阳完成签到,获得积分20
52秒前
爆米花应助pazuzu采纳,获得10
53秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959