Identification of Ferroptosis-related Genes for Diabetic Nephropathy by Bioinformatics and Experimental Validation

基因 生物 计算生物学 免疫系统 背景(考古学) 接收机工作特性 癌症研究 遗传学 医学 内科学 古生物学
作者
Siyuan Song,Jiangyi Yu
出处
期刊:Current Pharmaceutical Design [Bentham Science Publishers]
卷期号:31
标识
DOI:10.2174/0113816128349101250102113613
摘要

Objective: The present study delves into the exploration of diagnostic biomarkers linked with ferroptosis in the context of diabetic nephropathy, unraveling their underlying molecular mechanisms. Methods: In this study, we retrieved datasets GSE96804 and GSE30529 as the training cohort, followed by screening for Differentially Expressed Genes (DEGs). By intersecting these DEGs with known ferroptosisrelated genes, we obtained the differentially expressed genes related to ferroptosis (DEFGs). Subsequently, Weighted Correlation Network Analysis (WGCNA) was carried out to identify key modules associated with Diabetic Nephropathy (DN), culminating in the identification of a significant gene. Enrichment analysis and Gene Set Enrichment Analysis (GSEA) were then carried out on the DEFGs and genes linked to the significant gene. To validate our findings, we employed cohorts GSE30528 and GSE43950, utilizing ROC curve analysis to assess diagnostic efficacy for DN, as measured by the area under the curve (AUC). Immune cell infiltration was analyzed and compared between groups using the CIBERSORT algorithm. Bayesian colocalization analysis was performed to examine the co-location of DEFGs and DN. Finally, to validate the hub genes identified, we conducted quantitative real-time polymerase chain reaction (qRT-PCR) experiments in vitro. Results: FUZ, GLI1, GLI2, GLI3, and DVL2 were identified as the hub genes. Functional enrichment analysis demonstrated that ferroptosis and immune response play an important role in DN. ROC analysis showed that the identified genes had good diagnostic efficiency in DN. The results of the immune infiltration analysis showed that there may be crosstalk between ferroptosis and immune cells in DN. Bayesian co-localization analysis revealed the genetic correlation between the hub genes and DN. The outcomes of the qRT-PCR analyses corroborated the reliability of the identified hub genes as robust molecular markers for targeted therapy in DN. Conclusion: The interplay between immune inflammatory reactions and ferroptosis emerges as a crucial pathogenic mechanism, offering novel insights into the molecular therapy of DN. Furthermore, the identification of FUZ, GLI1, GLI2, GLI3, and DVL2 as potential targets holds promise for future therapeutic interventions aimed at treating DN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜于枫发布了新的文献求助10
1秒前
完美世界应助一号采纳,获得10
1秒前
俭朴思卉完成签到,获得积分20
3秒前
6秒前
7秒前
10秒前
JamesPei应助俭朴思卉采纳,获得10
10秒前
YYYY完成签到,获得积分10
10秒前
肖聪发布了新的文献求助10
11秒前
zx发布了新的文献求助10
11秒前
执玉完成签到,获得积分20
14秒前
15秒前
紫瓜发布了新的文献求助10
16秒前
冰凌心恋完成签到,获得积分10
17秒前
裴惊宋发布了新的文献求助10
19秒前
深蓝发布了新的文献求助10
20秒前
21秒前
高高的糜发布了新的文献求助10
21秒前
22秒前
zx发布了新的文献求助20
23秒前
23秒前
许起眸发布了新的文献求助10
25秒前
苏云云完成签到,获得积分10
25秒前
caicai发布了新的文献求助10
25秒前
26秒前
YKB完成签到,获得积分10
28秒前
噜鲸鲸发布了新的文献求助10
30秒前
32秒前
激情的苑睐完成签到 ,获得积分10
33秒前
ZZRR发布了新的文献求助10
33秒前
33秒前
Akim应助开心夜云采纳,获得10
34秒前
Akim应助爱听歌曼文采纳,获得10
34秒前
Lin完成签到,获得积分20
35秒前
研友_LaOyQZ完成签到,获得积分10
36秒前
噜鲸鲸完成签到,获得积分10
36秒前
知道发布了新的文献求助10
37秒前
小白发布了新的文献求助10
38秒前
38秒前
路奇应助曾小莹采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Research Handbook on Inflation 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939733
求助须知:如何正确求助?哪些是违规求助? 3485809
关于积分的说明 11034626
捐赠科研通 3215703
什么是DOI,文献DOI怎么找? 1777358
邀请新用户注册赠送积分活动 863506
科研通“疑难数据库(出版商)”最低求助积分说明 798908