TSCMDL: Multimodal Deep Learning Framework for Classifying Tree Species Using Fusion of 2-D and 3-D Features

计算机科学 人工智能 正射影像 树(集合论) 特征(语言学) 特征提取 激光雷达 模式识别(心理学) RGB颜色模型 上下文图像分类 机器学习 深度学习 数据挖掘 图像(数学) 遥感 数学 地理 数学分析 哲学 语言学
作者
Bingjie Liu,Yuanshuo Hao,Huaguo Huang,Shuxin Chen,Zengyuan Li,Erxue Chen,Xin Tian,Min Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:4
标识
DOI:10.1109/tgrs.2023.3266057
摘要

Accurate tree species information is a prerequisite for forest resource management. Combining light detection and ranging (LiDAR) and image data is one main method of tree species classification. Traditional machinelearningmethods rely on expert knowledge to calculatea large number of feature parameters.Deep learning technology can directly use the original image and pointclouddata to classify tree species. However, data with different patterns require the use of different types of deeplearningmethods. In this study, a multimodal deeplearningframework (TSCMDL) that fuses 2D and 3D features was constructed and then used to combine data from multiple sources for tree species classification. This framework uses an improved version of the PointMLP model as its backbone network and uses ResNet50 and PointMLP networks to extract the image features and pointcloudfeatures, respectively. The proposed framework was tested using UAV LiDAR data and RGB orthophotos. The results showed that the accuracy of the tree species classification using the TSCMDL framework was 98.52%, which was 4.02% higher than that based on pointcloudfeatures only. In addition, when the same hyperparameters were used for training the model, the efficiency of the model training was not significantly lower than for models based on pointcloudfeatures only. The proposed multimodal deeplearningframework extracts features directly from the original data and integrates them effectively, thus avoiding manual feature screening and achieving more accurate classification. The feature extraction network used in the TSCMDL framework can be replaced by other suitable frameworks and has strong application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莹亮的星空完成签到,获得积分10
1秒前
pluto应助潇洒莞采纳,获得10
1秒前
2秒前
2秒前
束玲玲完成签到,获得积分10
3秒前
充电宝应助anan采纳,获得10
3秒前
4秒前
潇潇发布了新的文献求助10
5秒前
个性毛衣发布了新的文献求助10
5秒前
6秒前
华仔应助安详芝麻采纳,获得10
6秒前
7秒前
善学以致用应助安卓锋采纳,获得10
8秒前
Evied发布了新的文献求助10
8秒前
9秒前
JamesPei应助糊涂的熊猫采纳,获得10
10秒前
量子星尘发布了新的文献求助10
13秒前
蓝幻雷发布了新的文献求助10
13秒前
13秒前
14秒前
亻鱼发布了新的文献求助10
15秒前
期待完成签到,获得积分10
18秒前
鑫xx完成签到 ,获得积分10
18秒前
安卓锋发布了新的文献求助10
19秒前
20秒前
Dream发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
fairy完成签到 ,获得积分10
23秒前
24秒前
乐乐宝完成签到,获得积分10
24秒前
25秒前
26秒前
烟花应助Cici采纳,获得10
28秒前
CodeCraft应助感动向梦采纳,获得10
28秒前
30秒前
小蘑菇应助Evied采纳,获得10
31秒前
Hushluo发布了新的文献求助10
31秒前
儒雅的菲鹰完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4636595
求助须知:如何正确求助?哪些是违规求助? 4030936
关于积分的说明 12471720
捐赠科研通 3717604
什么是DOI,文献DOI怎么找? 2051884
邀请新用户注册赠送积分活动 1083013
科研通“疑难数据库(出版商)”最低求助积分说明 965121