已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enlarged firing window and efficiency boosting of PERC solar cells by ‘laser enhanced contact optimization’ (LECO)

Boosting(机器学习) 材料科学 窗口(计算) 激光器 光电子学 计算机科学 人工智能 光学 万维网 物理
作者
Hannes Höffler,Tobias Fellmeth,Felix Maischner,Johannes Greulich,Eve Krassowski,Andreas Hennig
出处
期刊:Nucleation and Atmospheric Aerosols 被引量:1
标识
DOI:10.1063/5.0089264
摘要

In this contribution PERC solar cells are produced with a large variation of firing temperatures during the contact firing process. In addition the cells are exposed to the novel process 'laser enhanced contact optimization' (LECO). The front metallization is realized with standard silver pastes and LECO specific pastes on ultra-low doped (ULD) emitters with sheet resistances around 150 Ω/sq. The experiment shows that LECO significantly enlarges the firing window for the standard paste allowing fill factors of a minimum of 80 % for peak firing temperatures as low as 740°C. Hence LECO enables the choice of ideal firing conditions for standard pastes on ULD emitters, leading to an efficiency gain of 0.37 %abs. comparing the groups with and without LECO treatment. Moreover the use LECO specific pastes shows a very surprising and strong increase of short circuit current density jsc when going to lower firing temperatures and firing temperature profiles that differ from default. The best group metallized with LECO specific pastes was fired at a pre-peak temperature of 700°C and a peak temperature of 770°C resulting in an average efficiency of 22.54 % which is partially enabled by the high gain in jsc of 0.37 mA/cm2 compared to the best jsc obtained without LECO treatment. We believe that the ideal firing conditions for LECO specific pastes are not fully exploited and that there is even further potential by adjusting the firing profile to a LECO paste specific optimum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vera123完成签到,获得积分10
刚刚
凡仔发布了新的文献求助10
2秒前
4秒前
ff567发布了新的文献求助10
11秒前
13秒前
brisk应助半个饼采纳,获得10
15秒前
16秒前
我是老大应助sci大户采纳,获得10
18秒前
xiaomeng完成签到 ,获得积分10
18秒前
19秒前
20秒前
科研通AI5应助一杆长空采纳,获得30
21秒前
传奇3应助快乐无极限采纳,获得10
25秒前
25秒前
机灵柚子应助hello采纳,获得30
27秒前
27秒前
wanci应助vtfangfangfang采纳,获得10
30秒前
上上谦完成签到,获得积分10
31秒前
yupeijin发布了新的文献求助10
33秒前
传奇3应助儒雅沛凝采纳,获得10
35秒前
franklylyly完成签到,获得积分10
36秒前
凶狠的煎饼完成签到 ,获得积分10
36秒前
41秒前
chun完成签到,获得积分10
42秒前
43秒前
听话的富完成签到,获得积分20
43秒前
乔呆驼发布了新的文献求助10
44秒前
轮回1奇点完成签到,获得积分10
46秒前
一杆长空发布了新的文献求助30
49秒前
49秒前
49秒前
我是老大应助文静煜城采纳,获得10
49秒前
pzh完成签到 ,获得积分10
56秒前
孙燕应助Noob_saibot采纳,获得10
57秒前
乐乐应助乔呆驼采纳,获得10
58秒前
无花果应助霸气的金鱼采纳,获得10
59秒前
59秒前
田様应助科研通管家采纳,获得10
59秒前
xiaoli245发布了新的文献求助10
59秒前
59秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833541
求助须知:如何正确求助?哪些是违规求助? 3376064
关于积分的说明 10491471
捐赠科研通 3095564
什么是DOI,文献DOI怎么找? 1704474
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771758