ACS NSQIP Risk Calculator Accuracy Using a Machine Learning Algorithm Compared to Regression

统计 医学 回归 计算器 机器学习 算法 数学 人工智能 计算机科学 操作系统
作者
Yaoming Liu,Clifford Y. Ko,Bruce L. Hall,Mark E. Cohen
出处
期刊:Journal of The American College of Surgeons [Lippincott Williams & Wilkins]
被引量:23
标识
DOI:10.1097/xcs.0000000000000556
摘要

BACKGROUND: The American College of Surgeons NSQIP risk calculator (RC) uses regression to make predictions for fourteen 30-day surgical outcomes. While this approach provides accurate (discrimination and calibration) risk estimates, they might be improved by machine learning (ML). To investigate this possibility, accuracy for regression-based risk estimates were compared to estimates from an extreme gradient boosting (XGB)-ML algorithm. STUDY DESIGN: A cohort of 5,020,713 million NSQIP patient records was randomly divided into 80% for model construction and 20% for validation. Risk predictions using regression and XGB-ML were made for 13 RC binary 30-day surgical complications and one continuous outcome (length of stay [LOS]). For the binary outcomes, discrimination was evaluated using the area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC), and calibration was evaluated using Hosmer–Lemeshow statistics. Mean squared error and a calibration curve analog were evaluated for the continuous LOS outcome. RESULTS: For every binary outcome, discrimination (AUROC and AUPRC) was slightly greater for XGB-ML than for regression (mean [across the outcomes] AUROC was 0.8299 vs 0.8251, and mean AUPRC was 0.1558 vs 0.1476, for XGB-ML and regression, respectively). For each outcome, miscalibration was greater (larger Hosmer–Lemeshow values) with regression; there was statistically significant miscalibration for all regression-based estimates, but only for 4 of 13 when XGB-ML was used. For LOS, mean squared error was lower for XGB-ML. CONCLUSIONS: XGB-ML provided more accurate risk estimates than regression in terms of discrimination and calibration. Differences in calibration between regression and XGB-ML were of substantial magnitude and support transitioning the RC to XGB-ML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动笑容完成签到,获得积分10
1秒前
idynamics发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
orixero应助哇塞啊采纳,获得10
3秒前
nenoaowu发布了新的文献求助10
3秒前
3秒前
李昭进发布了新的文献求助10
4秒前
良辰应助学术蝗虫采纳,获得10
6秒前
Owen应助lala采纳,获得10
7秒前
7秒前
长江完成签到 ,获得积分10
7秒前
归尘发布了新的文献求助10
8秒前
温暖丸子发布了新的文献求助30
10秒前
今夜有雨完成签到 ,获得积分10
10秒前
天天快乐应助nenoaowu采纳,获得10
12秒前
14秒前
潇洒的小鸽子完成签到 ,获得积分10
19秒前
慕青应助RichieXU采纳,获得10
21秒前
22秒前
24秒前
24秒前
科研通AI5应助利奥采纳,获得10
25秒前
26秒前
lu发布了新的文献求助30
28秒前
星辰大海应助idynamics采纳,获得10
28秒前
29秒前
29秒前
30秒前
小蘑菇应助Zyan采纳,获得10
33秒前
33秒前
RichieXU发布了新的文献求助10
35秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
39秒前
英姑应助苟钟琴采纳,获得10
44秒前
45秒前
所所应助Ryuki采纳,获得10
46秒前
优美一德完成签到,获得积分20
46秒前
快递乱跑完成签到 ,获得积分10
46秒前
狗蛋喵喵喵完成签到,获得积分10
47秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798057
求助须知:如何正确求助?哪些是违规求助? 3343495
关于积分的说明 10316482
捐赠科研通 3060204
什么是DOI,文献DOI怎么找? 1679400
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763221