已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transfer learning-based confinement strength prediction of concrete confined by FRP transverse reinforcements

纤维增强塑料 钢筋 横截面 材料科学 复合材料 结构工程 工程类
作者
Fei Peng,Yazhong Li,Weichen Xue
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:310: 118116-118116
标识
DOI:10.1016/j.engstruct.2024.118116
摘要

Although several confinement strength models have been proposed for concrete confined by fiber-reinforced polymer (FRP) transverse reinforcements, these models show considerable scatter and discrepancies in the estimation of experimental data. Machine learning (ML) techniques may present an alternative prediction approach, but challenges arise due to insufficient experimental data. This study, therefore, develops a transfer learning-based model for predicting the confinement strength of concrete confined by FRP transverse reinforcements. Firstly, a literature review was conducted to collect a target dataset of FRP-confined concrete columns and a source dataset of steel-confined concrete columns used for knowledge transfer. Subsequently, a transfer learning algorithm was proposed to construct an ML confinement strength model for FRP-confined concrete. Finally, the performance of the proposed model was compared to that of six ML models and seven physics-based models. The model evaluation based on one-time random split indicated that the proposed model provided more accurate predictions for the confinement strength than other models considered in this study, achieving an R2 of 0.9089 on the test dataset. Shuffle split evaluation demonstrated that the proposed model exhibited superior stability and robustness compared to other models considered. Based on the proposed transfer learning-based model, the importance of the input parameters was obtained, further confirming the robustness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SiO2完成签到 ,获得积分10
1秒前
1234589756发布了新的文献求助10
2秒前
3秒前
偷乐发布了新的文献求助10
6秒前
6秒前
7秒前
Rebekah发布了新的文献求助10
10秒前
乃惜发布了新的文献求助10
10秒前
genomed应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
Zoo应助ruirui采纳,获得30
13秒前
魏冉完成签到,获得积分10
13秒前
13秒前
尤娜发布了新的文献求助10
14秒前
14秒前
blue发布了新的文献求助150
15秒前
17秒前
ChenGY发布了新的文献求助10
18秒前
18秒前
光脚小妖发布了新的文献求助10
20秒前
22秒前
崔译文发布了新的文献求助10
22秒前
23秒前
27秒前
郝好完成签到 ,获得积分10
27秒前
温暖完成签到 ,获得积分10
28秒前
momo完成签到,获得积分10
29秒前
张越发布了新的文献求助10
29秒前
32秒前
32秒前
崔译文完成签到,获得积分20
32秒前
32秒前
33秒前
SciGPT应助摆王上嘴脸采纳,获得10
34秒前
eleusis完成签到 ,获得积分10
35秒前
清脆绿竹完成签到,获得积分10
38秒前
优雅山柏发布了新的文献求助10
38秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4129491
求助须知:如何正确求助?哪些是违规求助? 3666499
关于积分的说明 11599818
捐赠科研通 3365128
什么是DOI,文献DOI怎么找? 1849050
邀请新用户注册赠送积分活动 912857
科研通“疑难数据库(出版商)”最低求助积分说明 828259