Transfer learning-based confinement strength prediction of concrete confined by FRP transverse reinforcements

纤维增强塑料 钢筋 横截面 材料科学 复合材料 结构工程 工程类
作者
Fei Peng,Yazhong Li,Weichen Xue
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:310: 118116-118116
标识
DOI:10.1016/j.engstruct.2024.118116
摘要

Although several confinement strength models have been proposed for concrete confined by fiber-reinforced polymer (FRP) transverse reinforcements, these models show considerable scatter and discrepancies in the estimation of experimental data. Machine learning (ML) techniques may present an alternative prediction approach, but challenges arise due to insufficient experimental data. This study, therefore, develops a transfer learning-based model for predicting the confinement strength of concrete confined by FRP transverse reinforcements. Firstly, a literature review was conducted to collect a target dataset of FRP-confined concrete columns and a source dataset of steel-confined concrete columns used for knowledge transfer. Subsequently, a transfer learning algorithm was proposed to construct an ML confinement strength model for FRP-confined concrete. Finally, the performance of the proposed model was compared to that of six ML models and seven physics-based models. The model evaluation based on one-time random split indicated that the proposed model provided more accurate predictions for the confinement strength than other models considered in this study, achieving an R2 of 0.9089 on the test dataset. Shuffle split evaluation demonstrated that the proposed model exhibited superior stability and robustness compared to other models considered. Based on the proposed transfer learning-based model, the importance of the input parameters was obtained, further confirming the robustness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助wzppp采纳,获得30
2秒前
阿嚏完成签到,获得积分10
3秒前
342396102发布了新的文献求助10
6秒前
8秒前
盼盼完成签到 ,获得积分10
8秒前
CodeCraft应助DNAdamage采纳,获得10
8秒前
耳机单蹦完成签到,获得积分10
9秒前
天天快乐应助年轻的冰海采纳,获得20
14秒前
15秒前
15秒前
19秒前
hahaha发布了新的文献求助10
20秒前
008发布了新的文献求助10
21秒前
摆烂的实验室打工人完成签到,获得积分10
24秒前
24秒前
26秒前
WDS完成签到 ,获得积分10
26秒前
我是老大应助lijinyu采纳,获得10
27秒前
342396102发布了新的文献求助10
29秒前
devilito发布了新的文献求助30
30秒前
呼呼兔完成签到,获得积分10
32秒前
32秒前
昏睡的蟠桃应助Hxq采纳,获得200
33秒前
FashionBoy应助负责的妙松采纳,获得10
33秒前
36秒前
今后应助qianqian采纳,获得10
39秒前
40秒前
安详的自中完成签到,获得积分10
40秒前
lijinyu发布了新的文献求助10
40秒前
DNAdamage发布了新的文献求助10
46秒前
zz完成签到,获得积分10
46秒前
46秒前
lijinyu完成签到,获得积分10
47秒前
52秒前
mogenshen完成签到,获得积分10
52秒前
研友_8KX15L完成签到 ,获得积分10
53秒前
科研通AI5应助Pupil采纳,获得10
54秒前
DNAdamage完成签到,获得积分10
55秒前
Akim应助008采纳,获得10
55秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778900
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218406
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440