The (Surprising) Sample Optimality of Greedy Procedures for Large-Scale Ranking and Selection

排名(信息检索) 选择(遗传算法) 比例(比率) 样品(材料) 计算机科学 贪婪算法 数学 运筹学 人工智能 地理 算法 化学 地图学 色谱法
作者
Zaile Li,W.C. Fan,L. Jeff Hong
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:7
标识
DOI:10.1287/mnsc.2023.00694
摘要

Ranking and selection (R&S) aims to select the best alternative with the largest mean performance from a finite set of alternatives. Recently, considerable attention has turned toward the large-scale R&S problem which involves a large number of alternatives. Ideal large-scale R&S procedures should be sample optimal; that is, the total sample size required to deliver an asymptotically nonzero probability of correct selection (PCS) grows at the minimal order (linear order) in the number of alternatives, k. Surprisingly, we discover that the naïve greedy procedure, which keeps sampling the alternative with the largest running average, performs strikingly well and appears sample optimal. To understand this discovery, we develop a new boundary-crossing perspective and prove that the greedy procedure is sample optimal for the scenarios where the best mean maintains at least a positive constant away from all other means as k increases. We further show that the derived PCS lower bound is asymptotically tight for the slippage configuration of means with a common variance. For other scenarios, we consider the probability of good selection and find that the result depends on the growth behavior of the number of good alternatives: if it remains bounded as k increases, the sample optimality still holds; otherwise, the result may change. Moreover, we propose the explore-first greedy procedures by adding an exploration phase to the greedy procedure. The procedures are proven to be sample optimal and consistent under the same assumptions. Last, we numerically investigate the performance of our greedy procedures in solving large-scale R&S problems. This paper was accepted by Baris Ata, stochastic models and simulation. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72091211, 72071146, 72161160340]. Supplemental Material: The e-companion and data files are available at https://doi.org/10.1287/mnsc.2023.00694 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhxy关注了科研通微信公众号
刚刚
李健的小迷弟应助无名采纳,获得10
1秒前
孤独凝芙完成签到,获得积分20
2秒前
小蘑菇应助芷毓_Tian采纳,获得10
3秒前
刘小小123完成签到,获得积分10
3秒前
3秒前
黄坤完成签到,获得积分10
4秒前
vast完成签到,获得积分10
4秒前
孤巷的猫完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
LLM完成签到,获得积分10
8秒前
失眠静珊完成签到,获得积分10
8秒前
orixero应助背后尔容采纳,获得10
8秒前
liangyx完成签到,获得积分10
8秒前
9秒前
ghhhn发布了新的文献求助10
10秒前
10秒前
彭于晏应助简简简采纳,获得30
11秒前
CYY完成签到,获得积分10
11秒前
爱科研完成签到,获得积分20
12秒前
小兔牙大脸猫完成签到,获得积分10
13秒前
13秒前
Best完成签到,获得积分20
14秒前
14秒前
changping应助冰_采纳,获得10
14秒前
LLM发布了新的文献求助10
16秒前
可爱的函函应助甾醇采纳,获得10
16秒前
16秒前
16秒前
芷毓_Tian发布了新的文献求助10
19秒前
希望天下0贩的0应助xqwwqx采纳,获得10
19秒前
21秒前
22秒前
22秒前
明理丹云完成签到,获得积分20
23秒前
24秒前
虚幻山水发布了新的文献求助10
24秒前
十一苗发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299382
求助须知:如何正确求助?哪些是违规求助? 4447543
关于积分的说明 13843076
捐赠科研通 4333171
什么是DOI,文献DOI怎么找? 2378566
邀请新用户注册赠送积分活动 1373887
关于科研通互助平台的介绍 1339425