Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning

一般化 人工智能 计算机科学 图形 机器学习 抗菌肽 相似性(几何) 计算生物学 氨基酸 人工神经网络 理论计算机科学 生物 数学 遗传学 生物化学 数学分析 图像(数学)
作者
Greneter Cordoves‐Delgado,César R. García‐Jacas
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4310-4321 被引量:22
标识
DOI:10.1021/acs.jcim.3c02061
摘要

Currently, antimicrobial resistance constitutes a serious threat to human health. Drugs based on antimicrobial peptides (AMPs) constitute one of the alternatives to address it. Shallow and deep learning (DL)-based models have mainly been built from amino acid sequences to predict AMPs. Recent advances in tertiary (3D) structure prediction have opened new opportunities in this field. In this sense, models based on graphs derived from predicted peptide structures have recently been proposed. However, these models are not in correspondence with state-of-the-art approaches to codify evolutionary information, and, in addition, they are memory- and time-consuming because depend on multiple sequence alignment. Herein, we presented a framework to create alignment-free models based on graph representations generated from ESMFold-predicted peptide structures, whose nodes are characterized with amino acid-level evolutionary information derived from the Evolutionary Scale Modeling (ESM-2) models. A graph attention network (GAT) was implemented to assess the usefulness of the framework in the AMP classification. To this end, a set comprised of 67,058 peptides was used. It was demonstrated that the proposed methodology allowed to build GAT models with generalization abilities consistently better than 20 state-of-the-art non-DL-based and DL-based models. The best GAT models were developed using evolutionary information derived from the 36- and 33-layer ESM-2 models. Similarity studies showed that the best-built GAT models codified different chemical spaces, and thus they were fused to significantly improve the classification. In general, the results suggest that esm-AxP-GDL is a promissory tool to develop good, structure-dependent, and alignment-free models that can be successfully applied in the screening of large data sets. This framework should not only be useful to classify AMPs but also for modeling other peptide and protein activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十一苗完成签到 ,获得积分10
1秒前
岁月如酒完成签到,获得积分10
1秒前
海子完成签到,获得积分10
2秒前
3秒前
XIaoLuzi发布了新的文献求助10
4秒前
5秒前
5秒前
开心完成签到,获得积分10
7秒前
欢喜素阴完成签到 ,获得积分10
8秒前
科研牛马完成签到 ,获得积分10
8秒前
海亦发布了新的文献求助10
9秒前
款款发布了新的文献求助10
10秒前
XIaoLuzi完成签到,获得积分10
10秒前
hyd1640完成签到,获得积分10
11秒前
Sofia发布了新的文献求助10
12秒前
Churchill87426完成签到,获得积分10
13秒前
太叔开山完成签到,获得积分20
13秒前
daigang完成签到 ,获得积分10
16秒前
FashionBoy应助太叔开山采纳,获得10
18秒前
强健的冰旋完成签到,获得积分10
20秒前
研友_GZ3zRn完成签到 ,获得积分0
22秒前
款款完成签到,获得积分10
22秒前
qz完成签到,获得积分10
22秒前
七里香完成签到 ,获得积分10
23秒前
易只羊完成签到,获得积分10
23秒前
kevin完成签到,获得积分10
23秒前
Fury完成签到 ,获得积分10
26秒前
1l完成签到,获得积分10
27秒前
直率的饼干完成签到,获得积分10
27秒前
开放剑鬼完成签到,获得积分10
27秒前
阿泡阿茶和阿壶完成签到,获得积分10
30秒前
ccmxigua完成签到,获得积分10
30秒前
31秒前
易止完成签到 ,获得积分10
31秒前
Sofia完成签到,获得积分10
34秒前
xixihaha完成签到,获得积分10
34秒前
吴家豪完成签到,获得积分10
35秒前
37秒前
推土机爱学习完成签到 ,获得积分10
40秒前
推土机爱学习完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807219
求助须知:如何正确求助?哪些是违规求助? 4122120
关于积分的说明 12753279
捐赠科研通 3856850
什么是DOI,文献DOI怎么找? 2123440
邀请新用户注册赠送积分活动 1145522
关于科研通互助平台的介绍 1038074