已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning

一般化 人工智能 计算机科学 图形 机器学习 抗菌肽 相似性(几何) 计算生物学 氨基酸 人工神经网络 理论计算机科学 生物 数学 遗传学 生物化学 数学分析 图像(数学)
作者
Greneter Cordoves‐Delgado,César R. García‐Jacas
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4310-4321 被引量:15
标识
DOI:10.1021/acs.jcim.3c02061
摘要

Currently, antimicrobial resistance constitutes a serious threat to human health. Drugs based on antimicrobial peptides (AMPs) constitute one of the alternatives to address it. Shallow and deep learning (DL)-based models have mainly been built from amino acid sequences to predict AMPs. Recent advances in tertiary (3D) structure prediction have opened new opportunities in this field. In this sense, models based on graphs derived from predicted peptide structures have recently been proposed. However, these models are not in correspondence with state-of-the-art approaches to codify evolutionary information, and, in addition, they are memory- and time-consuming because depend on multiple sequence alignment. Herein, we presented a framework to create alignment-free models based on graph representations generated from ESMFold-predicted peptide structures, whose nodes are characterized with amino acid-level evolutionary information derived from the Evolutionary Scale Modeling (ESM-2) models. A graph attention network (GAT) was implemented to assess the usefulness of the framework in the AMP classification. To this end, a set comprised of 67,058 peptides was used. It was demonstrated that the proposed methodology allowed to build GAT models with generalization abilities consistently better than 20 state-of-the-art non-DL-based and DL-based models. The best GAT models were developed using evolutionary information derived from the 36- and 33-layer ESM-2 models. Similarity studies showed that the best-built GAT models codified different chemical spaces, and thus they were fused to significantly improve the classification. In general, the results suggest that esm-AxP-GDL is a promissory tool to develop good, structure-dependent, and alignment-free models that can be successfully applied in the screening of large data sets. This framework should not only be useful to classify AMPs but also for modeling other peptide and protein activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zhu完成签到,获得积分10
4秒前
橘子法则完成签到,获得积分10
5秒前
YING完成签到,获得积分20
5秒前
NANANANANA完成签到,获得积分10
5秒前
5秒前
BoLuo关注了科研通微信公众号
6秒前
8秒前
爱大美完成签到,获得积分10
10秒前
YING发布了新的文献求助10
11秒前
星星泡饭发布了新的文献求助10
12秒前
botanist完成签到 ,获得积分10
13秒前
13秒前
九宝完成签到,获得积分10
14秒前
17秒前
19秒前
21秒前
22秒前
阳光发布了新的文献求助10
23秒前
爱与感谢完成签到 ,获得积分10
23秒前
阳阳阳发布了新的文献求助30
24秒前
深情安青应助Zhou采纳,获得10
24秒前
26秒前
武雨寒发布了新的文献求助10
26秒前
动漫大师发布了新的文献求助10
26秒前
XOO发布了新的文献求助10
30秒前
楠茸完成签到 ,获得积分10
30秒前
zfj完成签到 ,获得积分10
34秒前
包容的海豚完成签到 ,获得积分10
35秒前
XOO完成签到,获得积分10
37秒前
zhangpeipei完成签到,获得积分10
37秒前
Aloha完成签到 ,获得积分10
39秒前
占星家完成签到 ,获得积分10
40秒前
41秒前
nnfreya发布了新的文献求助10
41秒前
阳阳阳完成签到,获得积分20
43秒前
44秒前
gungun完成签到,获得积分10
44秒前
711moiii发布了新的文献求助10
46秒前
风风完成签到,获得积分10
47秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Topological Quantum Computing 300
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346255
关于积分的说明 10328616
捐赠科研通 3062701
什么是DOI,文献DOI怎么找? 1681157
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646