Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example

卷积神经网络 细胞病理学 乳腺癌 计算机科学 人工智能 癌症 人工神经网络 模式识别(心理学) 医学 病理 内科学 细胞学
作者
Mingxuan Xiao,Y Li,Xu Yan,Min Gao,Weimin Wang
标识
DOI:10.1145/3653946.3653968
摘要

Breast cancer is a relatively common cancer among gynecological cancers. Its diagnosis often relies on the pathology of cells in the lesion. The pathological diagnosis of breast cancer not only requires professionals and time, but also sometimes involves subjective judgment. To address the challenges of dependence on pathologists expertise and the time-consuming nature of achieving accurate breast pathological image classification, this paper introduces an approach utilizing convolutional neural networks (CNNs) for the rapid categorization of pathological images, aiming to enhance the efficiency of breast pathological image detection. And the approach enables the rapid and automatic classification of pathological images into benign and malignant groups. The methodology involves utilizing a convolutional neural network (CNN) model leveraging the Inceptionv3 architecture and transfer learning algorithm for extracting features from pathological images. Utilizing a neural network with fully connected layers and employing the SoftMax function for image classification. Additionally, the concept of image partitioning is introduced to handle high-resolution images. To achieve the ultimate classification outcome, the classification probabilities of each image block are aggregated using three algorithms: summation, product, and maximum. Experimental validation was conducted on the BreaKHis public dataset, resulting in accuracy rates surpassing 0.92 across all four magnification coefficients (40X, 100X, 200X, and 400X). It demonstrates that the proposed method effectively enhances the accuracy in classifying pathological images of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq.com发布了新的文献求助10
3秒前
木木三发布了新的文献求助10
3秒前
9秒前
x跳完成签到,获得积分10
10秒前
冰魂应助Cc8采纳,获得10
11秒前
l127完成签到,获得积分20
13秒前
Aowu应助西乡塘塘主采纳,获得10
15秒前
15秒前
Wuhuijing完成签到,获得积分10
15秒前
zlimu发布了新的文献求助10
16秒前
今夕何夕完成签到,获得积分20
20秒前
上官若男应助苏雨康采纳,获得10
21秒前
22秒前
23秒前
西乡塘塘主完成签到,获得积分10
25秒前
彩色黑米发布了新的文献求助10
29秒前
猪猪hero应助科研通管家采纳,获得10
30秒前
30秒前
彭于彦祖应助科研通管家采纳,获得20
30秒前
大个应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
雨夜星空应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
桐桐应助科研通管家采纳,获得10
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
猪猪hero应助科研通管家采纳,获得10
31秒前
爆米花应助科研通管家采纳,获得10
31秒前
aprilvanilla应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
猪猪hero应助科研通管家采纳,获得10
31秒前
31秒前
雨夜星空应助科研通管家采纳,获得10
31秒前
猪猪hero应助科研通管家采纳,获得10
31秒前
ding应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得10
31秒前
乐乐应助科研通管家采纳,获得10
32秒前
打打应助科研通管家采纳,获得10
32秒前
酷波er应助科研通管家采纳,获得10
32秒前
领导范儿应助科研通管家采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944