Comparative research on network intrusion detection methods based on machine learning

计算机科学 机器学习 人工智能 入侵检测系统 超参数 决策树 朴素贝叶斯分类器 支持向量机 集成学习 随机森林 人工神经网络 深度学习 算法 数据挖掘
作者
Chunying Zhang,Donghao Jia,Liya Wang,Wenjie Wang,Fengchun Liu,Aimin Yang
出处
期刊:Computers & Security [Elsevier BV]
卷期号:121: 102861-102861 被引量:61
标识
DOI:10.1016/j.cose.2022.102861
摘要

Network intrusion detection system is an essential part of network security research. It detects intrusion behaviors through active defense technology and takes emergency measures such as alerting and terminating intrusions. With the rapid development of machine learning technology, more and more researchers apply machine learning algorithms to network intrusion detection to improve detection efficiency and accuracy. Due to the different principles of various algorithms, they also have their advantages and disadvantages. To construct the dominant algorithm model in the field of network intrusion detection and provide the accuracy value, this paper systematically combs the application literature of machine learning algorithms in intrusion detection in the past ten years. A review is made from three categories: traditional machine learning, ensemble learning, and deep learning. Then, this paper selects the KDD CUP99 and NSL-KDD datasets to conduct comparative experiments on decision trees, Naive Bayes, support vector machines, random forests, XGBoost, convolutional neural networks, and recurrent neural networks. The detection accuracy, F1, AUC, and other indicators of these algorithms on different data sets are compared. The experimental results show that the effect of the ensemble learning algorithm is generally better. The Naive Bayes algorithm has low accuracy in recognizing the learned data, but it has obvious advantages when facing new types of attacks, and the training speed is faster. The deep learning algorithm is not particularly prominent in this experiment, but its optimal results are affected by the structure, hyperparameters, and the number of training iterations, which need further in-depth study. Finally, the main challenges facing the current network intrusion detection field are summarized, and the future research directions have been prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助1212431采纳,获得10
2秒前
www发布了新的文献求助10
3秒前
4秒前
害羞静柏完成签到,获得积分10
5秒前
丁丁发布了新的文献求助10
7秒前
善学以致用应助kiwi采纳,获得10
13秒前
1212431完成签到,获得积分20
14秒前
缓慢又蓝完成签到,获得积分10
18秒前
18秒前
斯文败类应助乖7采纳,获得10
21秒前
kiwi完成签到,获得积分10
21秒前
22秒前
xiaohe完成签到,获得积分10
22秒前
22秒前
www完成签到,获得积分10
23秒前
乐怡日尧完成签到,获得积分10
23秒前
24秒前
kiwi发布了新的文献求助10
25秒前
1212431发布了新的文献求助10
28秒前
樱桃超级大丸子完成签到,获得积分10
32秒前
32秒前
英姑应助Guoqiang采纳,获得10
36秒前
36秒前
苹果千柔发布了新的文献求助10
39秒前
李健的小迷弟应助lin采纳,获得10
40秒前
41秒前
洁净之柔发布了新的文献求助10
41秒前
chenhui发布了新的文献求助10
41秒前
achaia完成签到,获得积分10
44秒前
传奇3应助狂飙的小蜗牛采纳,获得30
45秒前
45秒前
科研通AI2S应助ZHANG123采纳,获得10
45秒前
47秒前
笙声发布了新的文献求助30
50秒前
50秒前
苹果千柔完成签到,获得积分20
51秒前
lin发布了新的文献求助10
53秒前
jiahao完成签到,获得积分10
56秒前
xyx完成签到,获得积分10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844