Genome-scale knockout simulation and clustering analysis of drug-resistant breast cancer cells reveal drug sensitization targets

药品 乳腺癌 敏化 癌细胞 紫杉醇 抗药性 计算生物学 阿霉素 癌症研究 癌症 生物 遗传学 药理学 化疗 免疫学
作者
JinA Lim,Hae Deok Jung,Soo Young Park,Moonhyeon Jeon,Da Sol Kim,Ryeongeun Cho,Dohyun Han,Han Suk Ryu,Yoosik Kim,Hyun Uk Kim
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (26) 被引量:1
标识
DOI:10.1073/pnas.2425384122
摘要

Anticancer chemotherapy is an essential part of cancer treatment, but the emergence of resistance remains a major hurdle. Metabolic reprogramming is a notable phenotype associated with the acquisition of drug resistance. Here, we develop a computational framework that predicts metabolic gene targets capable of reverting the metabolic state of drug-resistant cells to that of drug-sensitive parental cells, thereby sensitizing the resistant cells. The computational framework performs single-gene knockout simulation of genome-scale metabolic models that predicts genome-wide metabolic flux distribution in drug-resistant cells, and clusters the resulting knockout flux data using uniform manifold approximation and projection, followed by k -means clustering. From the clustering analysis, knockout genes that lead to the flux data near that of drug-sensitive cells are considered drug sensitization targets. This computational approach is demonstrated using doxorubicin- and paclitaxel-resistant MCF7 breast cancer cells. Drug sensitization targets are further refined based on proteome and metabolome data, which generate GOT1 for doxorubicin-resistant MCF7, GPI for paclitaxel-resistant MCF7, and SLC1A5 as a common target. These targets are experimentally validated where treating drug-resistant cancer cells with small-molecule inhibitors results in increased sensitivity of drug-resistant cells to doxorubicin or paclitaxel. The applicability of the developed framework is further demonstrated using drug-resistant triple-negative breast cancer cells. Taken together, the computational framework predicts drug sensitization targets in an intuitive and cost-efficient manner and can be applied to overcome drug-resistant cells associated with various cancers and other metabolic diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
干不了一点完成签到,获得积分10
2秒前
虚幻的不愁完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
黑猫完成签到,获得积分10
4秒前
土人发布了新的文献求助10
5秒前
罗马没有马完成签到 ,获得积分10
6秒前
小闵发布了新的文献求助10
6秒前
隐形曼青应助YGJ采纳,获得10
7秒前
跳跃碧灵完成签到,获得积分10
7秒前
8秒前
嗳7完成签到 ,获得积分10
9秒前
研友_nqBP4Z发布了新的文献求助50
12秒前
有魅力如天完成签到,获得积分10
13秒前
难忘发布了新的文献求助10
17秒前
kxy0311完成签到 ,获得积分10
17秒前
852应助蔡静雯popo采纳,获得10
19秒前
20秒前
温暖听安应助温暖元容采纳,获得10
20秒前
夏晴晴完成签到,获得积分10
22秒前
kohu完成签到,获得积分10
23秒前
研友_nqBP4Z完成签到,获得积分10
26秒前
26秒前
27秒前
28秒前
深情安青应助现代白猫采纳,获得10
30秒前
不配.应助忧伤的百川采纳,获得30
30秒前
蔡静雯popo发布了新的文献求助10
32秒前
33秒前
张益发发布了新的文献求助10
33秒前
liang发布了新的文献求助10
33秒前
34秒前
充电宝应助hamzhang0426采纳,获得10
34秒前
Sssmmmyy完成签到,获得积分10
35秒前
Liekkas完成签到,获得积分10
36秒前
充电宝应助北港十里巷采纳,获得10
36秒前
丘比特应助wswddtd采纳,获得10
36秒前
zyy发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Die neue Frauenbewegung in Deutschland. Abschied vom kleinen Unterschied. Eine Quellensammlung 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4337367
求助须知:如何正确求助?哪些是违规求助? 3847276
关于积分的说明 12015650
捐赠科研通 3488198
什么是DOI,文献DOI怎么找? 1914497
邀请新用户注册赠送积分活动 957409
科研通“疑难数据库(出版商)”最低求助积分说明 857850