已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Genome-scale knockout simulation and clustering analysis of drug-resistant breast cancer cells reveal drug sensitization targets

药品 乳腺癌 聚类分析 敏化 计算生物学 药物反应 比例(比率) 癌症 生物 遗传学 药理学 计算机科学 免疫学 地理 机器学习 地图学
作者
JinA Lim,Hae Deok Jung,Soo Young Park,Moonhyeon Jeon,Da Sol Kim,Ryeongeun Cho,Dohyun Han,Han Suk Ryu,Yoosik Kim,Hyun Uk Kim
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (26)
标识
DOI:10.1073/pnas.2425384122
摘要

Anticancer chemotherapy is an essential part of cancer treatment, but the emergence of resistance remains a major hurdle. Metabolic reprogramming is a notable phenotype associated with the acquisition of drug resistance. Here, we develop a computational framework that predicts metabolic gene targets capable of reverting the metabolic state of drug-resistant cells to that of drug-sensitive parental cells, thereby sensitizing the resistant cells. The computational framework performs single-gene knockout simulation of genome-scale metabolic models that predicts genome-wide metabolic flux distribution in drug-resistant cells, and clusters the resulting knockout flux data using uniform manifold approximation and projection, followed by k -means clustering. From the clustering analysis, knockout genes that lead to the flux data near that of drug-sensitive cells are considered drug sensitization targets. This computational approach is demonstrated using doxorubicin- and paclitaxel-resistant MCF7 breast cancer cells. Drug sensitization targets are further refined based on proteome and metabolome data, which generate GOT1 for doxorubicin-resistant MCF7, GPI for paclitaxel-resistant MCF7, and SLC1A5 as a common target. These targets are experimentally validated where treating drug-resistant cancer cells with small-molecule inhibitors results in increased sensitivity of drug-resistant cells to doxorubicin or paclitaxel. The applicability of the developed framework is further demonstrated using drug-resistant triple-negative breast cancer cells. Taken together, the computational framework predicts drug sensitization targets in an intuitive and cost-efficient manner and can be applied to overcome drug-resistant cells associated with various cancers and other metabolic diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Baraka完成签到,获得积分10
1秒前
破晓完成签到,获得积分10
2秒前
思源应助s12采纳,获得30
3秒前
kk完成签到,获得积分10
4秒前
五條小羊完成签到 ,获得积分10
4秒前
5秒前
6秒前
Mr发布了新的文献求助10
6秒前
7秒前
X_发布了新的文献求助10
10秒前
大虫子发布了新的文献求助10
10秒前
11秒前
CipherSage应助忧郁的依珊采纳,获得10
12秒前
13秒前
科目三应助白开水采纳,获得10
14秒前
小新一护完成签到,获得积分10
15秒前
15秒前
15秒前
大得德发布了新的文献求助10
17秒前
旺仔发布了新的文献求助10
18秒前
19秒前
解语花发布了新的文献求助10
19秒前
kyo关闭了kyo文献求助
20秒前
20秒前
现实的访云完成签到 ,获得积分10
20秒前
俭朴的跳跳糖完成签到 ,获得积分10
21秒前
斯文败类应助绝世冰淇淋采纳,获得10
21秒前
划水小舟发布了新的文献求助10
21秒前
bkagyin应助知行合一采纳,获得10
22秒前
23秒前
Snieno发布了新的文献求助10
24秒前
摸俞发布了新的文献求助10
26秒前
28秒前
xjy完成签到,获得积分10
30秒前
34秒前
威武的蘑菇完成签到,获得积分10
35秒前
lcj完成签到,获得积分10
37秒前
小乐儿~完成签到,获得积分10
38秒前
化身孤岛的鲸完成签到,获得积分10
40秒前
Owllight完成签到,获得积分20
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Research Handbook on Inflation 900
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3940416
求助须知:如何正确求助?哪些是违规求助? 3486144
关于积分的说明 11036878
捐赠科研通 3216011
什么是DOI,文献DOI怎么找? 1777626
邀请新用户注册赠送积分活动 863705
科研通“疑难数据库(出版商)”最低求助积分说明 798972