Unveiling urinary diagnostic biomarkers for diabetic kidney disease using metabolomics and machine learning approaches

低牛磺酸 医学 代谢组学 牛磺酸 肌酐 内科学 次黄嘌呤 糖尿病 内分泌学 生物信息学 生物化学 生物 氨基酸
作者
Yuan Sun,Haiying Li,Xi Yan,Guanwei Ma,Hongbo Yang,Yikun Zhu,Jiancheng Li,Wei Lu,Man Zhan,Juan Yuan,Zhiyuan Liang,Liming Shen,Yongdong Zou
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:27 (12): 7355-7366
标识
DOI:10.1111/dom.70138
摘要

Abstract Aims Diabetic kidney disease (DKD) is a specific complication of diabetes that poses a major challenge to global public health. However, clinical detection of DKD still has notable limitations. This study aimed to identify potential biomarkers and explore the underlying mechanisms of DKD. Materials and Methods Urine samples were collected from patients with type 2 diabetes mellitus and healthy subjects. Changes in urine metabolic profiles were analysed via liquid chromatography–tandem mass spectrometry combined with a machine learning approach. Results Metabolomics revealed characteristic metabolite alterations at different stages of DKD progression, and pathway enrichment analysis revealed significant changes in pathways such as biotin metabolism and taurine and hypotaurine metabolism, among which biotin and taurine are the key regulatory molecules of these pathways. Combined screening with two machine learning algorithms finally identified five differentially expressed metabolites: hypoxanthine, N ‐acetyl‐DL‐histidine, cortisol, tetrahydrobiopterin and L‐kynurenine. Correlation analysis coupled with receiver operating characteristic curve validation showed these seven biomarkers were significantly correlated with clinical indicators (urinary albumin creatinine ratio, serum creatinine) and had early diagnostic value. Notably, multiple reaction monitoring validation revealed taurine and hypoxanthine expression exhibited DKD stage‐dependent characteristics. Conclusion This study initially identified seven DKD biomarkers with excellent diagnostic performance and further clarified their potential role in mediating DKD progression via mechanisms involving biotin metabolism, taurine and hypotaurine metabolism and steroid hormone biosynthesis. These findings provide important insights for the early precise diagnosis and mechanistic exploration of DKD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
sunny心晴完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
sound完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
朱哥永正完成签到,获得积分10
20秒前
大口吃面的女医生完成签到 ,获得积分10
21秒前
22秒前
rainbow完成签到 ,获得积分10
25秒前
笨笨千亦完成签到 ,获得积分10
26秒前
和谐的冬莲完成签到 ,获得积分10
28秒前
LY0430完成签到 ,获得积分10
31秒前
Fresh完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
38秒前
殷勤的凝海完成签到 ,获得积分10
39秒前
40秒前
杨阳洋完成签到 ,获得积分10
41秒前
ning_qing完成签到 ,获得积分10
42秒前
43秒前
少盐完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
46秒前
Leif完成签到,获得积分0
46秒前
pp完成签到 ,获得积分10
48秒前
小雯完成签到,获得积分10
48秒前
maerray发布了新的文献求助10
49秒前
耍酷寻双完成签到 ,获得积分0
50秒前
sherry完成签到 ,获得积分10
56秒前
57秒前
Sunbrust完成签到 ,获得积分10
57秒前
环游世界完成签到 ,获得积分10
1分钟前
迟宏珈完成签到,获得积分10
1分钟前
枫糖叶落完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
菲菲公主完成签到 ,获得积分10
1分钟前
1分钟前
潇洒的语蝶完成签到 ,获得积分0
1分钟前
王kk完成签到 ,获得积分10
1分钟前
liang完成签到 ,获得积分20
1分钟前
chiazy完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677061
求助须知:如何正确求助?哪些是违规求助? 4970068
关于积分的说明 15159298
捐赠科研通 4836738
什么是DOI,文献DOI怎么找? 2591299
邀请新用户注册赠送积分活动 1544759
关于科研通互助平台的介绍 1502754