亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

S3R: Shape and Semantics-Based Selective Regularization for Explainable Continual Segmentation Across Multiple Sites

分割 正规化(语言学) 计算机科学 人工智能 语义学(计算机科学) 图像分割 自然语言处理 模式识别(心理学) 理论计算机科学 程序设计语言
作者
Jingyang Zhang,Ran Gu,Peng Xue,Mianxin Liu,Hao Zheng,Yefeng Zheng,Lei Ma,Guotai Wang,Lixu Gu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2539-2551 被引量:1
标识
DOI:10.1109/tmi.2023.3260974
摘要

In clinical practice, it is desirable for medical image segmentation models to be able to continually learn on a sequential data stream from multiple sites, rather than a consolidated dataset, due to storage cost and privacy restrictions. However, when learning on a new site, existing methods struggle with a weak memorizability for previous sites with complex shape and semantic information, and a poor explainability for the memory consolidation process. In this work, we propose a novel Shape and Semantics-based Selective Regularization ( $\text{S}^{{3}}\text{R}$ ) method for explainable cross-site continual segmentation to maintain both shape and semantic knowledge of previously learned sites. Specifically, $\text{S}^{{3}}\text{R}$ method adopts a selective regularization scheme to penalize changes of parameters with high Joint Shape and Semantics-based Importance (JSSI) weights, which are estimated based on the parameter sensitivity to shape properties and reliable semantics of the segmentation object. This helps to prevent the related shape and semantic knowledge from being forgotten. Moreover, we propose an Importance Activation Mapping (IAM) method for memory interpretation, which indicates the spatial support for important parameters to visualize the memorized content. We have extensively evaluated our method on prostate segmentation and optic cup and disc segmentation tasks. Our method outperforms other comparison methods in reducing model forgetting and increasing explainability. Our code is available at https://github.com/jingyzhang/S3R .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
5秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
靓丽奇迹完成签到 ,获得积分10
43秒前
liuliu发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
充电宝应助高大的羿采纳,获得10
2分钟前
Kiri_0661发布了新的文献求助10
3分钟前
高大的羿完成签到,获得积分20
3分钟前
科研通AI6应助小蜻蜓采纳,获得30
3分钟前
科研通AI6应助小蜻蜓采纳,获得30
3分钟前
科研通AI6应助PALMS采纳,获得10
3分钟前
3分钟前
sissie发布了新的文献求助10
3分钟前
hb完成签到,获得积分10
3分钟前
orixero应助sissie采纳,获得10
3分钟前
积极的西牛完成签到,获得积分10
3分钟前
小二郎应助积极的西牛采纳,获得10
4分钟前
yyw完成签到,获得积分10
4分钟前
LPPQBB应助科研通管家采纳,获得200
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
yyw发布了新的文献求助10
4分钟前
4分钟前
小杨完成签到 ,获得积分10
4分钟前
ooooozhubi完成签到 ,获得积分10
4分钟前
drirshad完成签到,获得积分10
4分钟前
Dominant完成签到,获得积分10
5分钟前
共享精神应助慕青采纳,获得10
5分钟前
5分钟前
干净的烧鹅完成签到,获得积分10
5分钟前
小蜻蜓发布了新的文献求助30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357135
求助须知:如何正确求助?哪些是违规求助? 4488655
关于积分的说明 13972423
捐赠科研通 4389809
什么是DOI,文献DOI怎么找? 2411723
邀请新用户注册赠送积分活动 1404285
关于科研通互助平台的介绍 1378445