SGKT: Session graph-based knowledge tracing for student performance prediction

计算机科学 会话(web分析) 图形 追踪 理论计算机科学 人工智能 机器学习 程序设计语言 万维网
作者
Zhengyang Wu,Li Huang,Qionghao Huang,Changqin Huang,Yong Tang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:206: 117681-117681 被引量:37
标识
DOI:10.1016/j.eswa.2022.117681
摘要

Knowledge tracing is a modeling method of students’ knowledge mastery. The deep knowledge tracing (DKT) model uses long short-term memory (LSTM) to process the sequence data of students exercises. However, the LSTM-based model pays more attention to the short-term response status of students while ignoring the long-term learning process. Moreover, existing graph-based knowledge tracing models focus on the static relationship between exercises and skills, ignoring the dynamic graphs formed by students exercises in a session. In this work, we propose a novel knowledge tracing model which is based on an exercise session graph, named session graph based knowledge tracing (SGKT). The session graph is used to model the students’ answering process. In addition, a relationship graph is used to model the relationship between exercises and skills. Then we use gated graph neural networks to obtain the students’ knowledge state from the session graph and use graph convolutional networks to obtain the embedding representations of exercises and skills in the relationship graph. Next, through the interaction mechanism, multiple interaction states composed of knowledge states and embedding representations are obtained. The attention mechanism is used to find the focus from these states and make predictions. Experiments are conducted on three publicly available datasets and the results show that our approach has advantages over some existing baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANQ完成签到,获得积分10
刚刚
甄的艾你完成签到,获得积分10
1秒前
medlive2020完成签到,获得积分10
1秒前
⊙▽⊙完成签到,获得积分10
1秒前
2秒前
iNk应助dspan采纳,获得10
2秒前
周杰伦啦啦完成签到 ,获得积分10
2秒前
3秒前
应俊完成签到 ,获得积分10
5秒前
5秒前
今后应助Rsoup采纳,获得10
5秒前
科研废物完成签到 ,获得积分10
5秒前
夏xia完成签到,获得积分10
5秒前
RebeccaHe完成签到,获得积分10
6秒前
陈晓真完成签到,获得积分10
6秒前
SciGPT应助Jackcaosky采纳,获得10
7秒前
lili完成签到,获得积分10
7秒前
CC完成签到,获得积分10
7秒前
SYLH应助medlive2020采纳,获得10
7秒前
暴走完成签到,获得积分10
8秒前
是菜狗子啊完成签到 ,获得积分10
9秒前
Wrl完成签到,获得积分20
9秒前
隐形曼青应助llx采纳,获得10
9秒前
小宋发布了新的文献求助10
9秒前
feng完成签到,获得积分10
10秒前
英俊的铭应助99采纳,获得10
10秒前
大吴克发布了新的文献求助10
10秒前
11秒前
XC完成签到,获得积分10
11秒前
阿文文文完成签到,获得积分10
11秒前
岁岁完成签到 ,获得积分10
11秒前
炙热的灵薇完成签到,获得积分20
12秒前
xpqiu完成签到,获得积分10
12秒前
cdercder应助聪慧芷巧采纳,获得10
12秒前
12秒前
13秒前
ananan完成签到 ,获得积分10
14秒前
火星上的冬云完成签到,获得积分20
14秒前
Lucas完成签到,获得积分10
14秒前
满城烟沙完成签到 ,获得积分0
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816117
求助须知:如何正确求助?哪些是违规求助? 3359667
关于积分的说明 10403987
捐赠科研通 3077496
什么是DOI,文献DOI怎么找? 1690307
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781